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d Department of Geography, Swansea University, SA2 8PP Swansea, United Kingdom   

A R T I C L E  I N F O   

Keywords: 
Hyperspectral 
Radiative transfer model 
RTM 
Nano-Hyperspec 
Vineyards 
Unmanned aerial vehicles 
UAS 
Wine aroma 

A B S T R A C T   

Together with ensuring a stable yield, improving grape composition and aroma is the main goal of wine grape 
production management as it determines consumer acceptance and ultimately revenue. Understanding the 
triggers of the synthesis of aromatic components and finding methods to map their variability in the field can aid 
management practices during the season and planning selective harvest in views of maximizing benefit. Vege
tation indices have been shown to track grape colour, sugar and acidity content but it has been demonstrated that 
aromatic components are the main drivers of the final palate of wine and are not correlated to sugar concen
tration. Leaf pigments such as chlorophyll, carotenoids and anthocyanins are involved in the metabolic pathways 
of aroma compounds in grapes. The physiological connections between grape aromatic components and primary 
and secondary photosynthetic pigments suggest that they could be used to detect processes related to aroma 
composition. 

This study investigates the links between grape quality parameters such as aromatic components and image- 
quantified spectral indices and photosynthetic plant traits derived by physical model inversion methods. Two sets 
of high-spatial resolution hyperspectral and thermal imagery were collected with an unmanned platform at 
veraison and harvest. The variability found in the field was partly but not fully explained by the thermal-based 
crop water stress index as an indicator of water stress (r2= 0.51–0.58, p-value<0.01). Fluspect-CX leaf model was 
coupled to 4SAIL canopy model and inverted to map the main photosynthetic pigment groups and the fraction of 
pigments acting in photoprotection. Results obtained through radiative transfer model inversion outperformed 
traditional vegetation indices related to pigment content and degradation. We found statistically significant 
relationships between image-retrieved pigments and terpenoids responsible for wine aroma (p-value<0.005).   

1. Introduction 

While ensuring a level of production is critical, wine grape managers 
also put their efforts on optimising grape quality, later resulting in better 
wine flavour. The flavour of a wine is the most important factor deter
mining its consumer acceptance (Yegge and Noble, 2001), and this 
flavour is the result of a complex balance of all aroma components 
(Marais, 1983). While for other crops the benefit is mainly depending on 
yield and the management strategy is to maximise production, it is well 
known that for wine grapes the focus is on composition and over
cropping reduces grape quality, especially in cooler areas where it can 
lead to a delay in maturation and an increased susceptibility to disease 

(Stergios and Howell, 1977; Jackson and Lombard, 1993). 
A high number of volatile components have been identified in grapes 

and wine contributing to the final flavour and a high proportion of those 
components are originating in the grape and then independent of the 
vinification process (Schreier, 1979; Black et al., 2015). Most of these 
volatile or aroma components are terpenoids, secondary metabolites of 
diverse chemical composition (Yu and Utsumi, 2009; Mele et al., 2020). 
Plants synthesise terpenoids as means of communication with other 
organisms through odour. They have the task of attracting pollinators or 
beneficial interactions (Suckling et al., 2012; Muhlemann et al., 2014) 
and deter pests (Boachon et al., 2015). Apart from the interaction with 
other organisms, terpenoid synthesis is affected by sun exposure, water 
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availability and temperature (Gil et al., 2013; Mele et al., 2020). It is also 
function of vineyard management practices like defoliation or pruning 
which are used to improve final grape composition and quality (Jackson 
and Lombard, 1993; Hernandez-Orte et al., 2014; Boss et al., 2018). 
Terpenoids accumulate in grapes at different phenological stages but 
previous studies suggest that it is between veraison and harvest when 
the main synthesis activity takes place (Zhang et al., 2016; Luo et al., 
2019). 

The synthesis of terpenoids follows two main metabolic pathways 
where the major photosynthetic pigment groups are directly involved 
(Lichtenthaler, 1999). Like many terpenoids, carotenoids are iso
prenoids and the chlorophyll molecule is isoprenoid-derived as well 
(Vranova et al., 2012). Both terpenoid synthesis and leaf chlorophyll 
breakdown into secondary pigments have been linked to plant response 
to pest attacks (Peñuelas et al., 1995). Some carotenoids are known to be 
affected by illumination intensity and act in photoprotection mecha
nisms to avoid oxidative damage and are direct precursors of some 
terpenoids like β-ionone (Bureau et al., 2000a; 2000b). Both photosyn
thetic pigments and isoprenoids are involved in the same pathway which 
flux has been demonstrated to be highly affected by environmental and 
developmental factors (Vranova et al., 2012). Although the full dy
namics of this pathway have still not been thoroughly studied in plants, 
work done in seedlings showed how light intensity is one of the main 
regulators (Learned and Connolly, 1997; ̌Suklje et al., 2014; Sasaki et al., 
2016). The understanding of the dynamics of the photosynthetic pig
ments is more advanced, including the effects of illumination intensity 
and stress on the pigment composition (Demmig-Adams and Adams, 
1992; 1996; Matile et al., 1999; Gilmore, 1997). 

In order to adapt vineyard management practices toward the desired 
volatile synthesis level, there is a need for spatially explicit information 
on expected terpenoid concentration (Scarlett, et al., 2014). 
Spectral-based remote sensing can provide the means to map this in
formation. Previous studies have shown how remote sensing can assist 
vineyard managers with irrigation scheduling (Bellvert et al., 2015), 
assessing the heterogeneity of pigment concentration (Zarco-Tejada et 
al., 2013) or addressing nutrient deficiencies (Gil-Perez et al., 2010; 
Meggio et al., 2010). On the mapping of grape composition, most efforts 
have been put toward linking vegetation indices related to water (i.e. 
Serrano et al., 2012, Gonzalez-Flor et al., 2012) or nutrient stress 
(Meggio et al., 2010) to grape sugar and acidity content. As an example, 
reflectance-based proxies of chlorophyll and carotenoids have been 
found to partially describe the grape composition and colour in tem
pranillo grapes (Martin et al., 2007). Although the sugar and acidity 
content of grapes are important shaping the taste of the must, it has been 
demonstrated that it is the aroma or volatile components the ones 
driving the final character and palate of the wine. Those aroma com
ponents do not seem to be correlated to sugar concentration (Gonza
lez-Barreiro et al., 2015). Other studies have used indices related to plant 
growth and vigour to predict final grape composition (Lamb et al., 2004; 
Hall et al., 2010). These indices are a proxy of vegetation growth and 
health which can result in increased yield but not quality. As vine leaf 
area has been found to be inversely correlated to grape quality, methods 
based on vigour assessment can lead to wrong conclusions (Hunter et al., 
1991; Zhang et al., 2017). To our knowledge, no studies are investigating 
the links between the synthesis of volatile components of the grape, 
indicators of grape aroma, and remote sensing derived photosynthetic 
pigment pools that are involved in the same metabolic pathways (i.e. 
chlorophylls and carotenoids). 

There is extensive literature focusing on the estimation of photo
synthetic pigments using spectral data (Blackburn, 2007; Zhang et al., 
2021). Pigment composition has traditionally been retrieved using 
spectral indices developed using specific wavelengths affected by spe
cific absorption features. While accurate estimations can be achieved 
with vegetation indices, they are proxies of leaf pigment concentrations 
needing empirical relationships to establish those links, which are 
hardly universal across species, varieties and sites (Croft et al., 2014). 

Vegetation indices are also affected by canopy structure, illumination 
intensity and soil background even when they have been optimized to 
minimise those confounding effects (Soares Galvao et al., 2016). In 
vineyards, the estimation of both chlorophyll and carotenoid content 
has been demonstrated using high-spatial resolution hyperspectral im
agery on pure vine pixels (Meggio et al., 2010; Gil-Perez et al., 2010; 
Zarco-Tejada et al., 2013). These methods use vegetation indices in 
combination with radiative transfer models to minimise the illumination 
geometry, canopy structure and soil background effects on the spectral 
reflectance. Simulating the interaction of illumination and varying 
canopy structural scenarios and backgrounds adds computational 
complexity to the retrieval method but allows more robust and trans
ferable results. Radiative transfer model inversion has also been used to 
simultaneously quantify several plant traits based on the full canopy 
spectrum (Jacquemoud et al., 2009). 

New advances in radiative transfer models now also provide the 
means to simulate plant photosynthetic and photoprotective activity 
adding new avenues to the remote sensing of stress to aid crop man
agement (van der Tol et al., 2009; Vilfan et al., 2018). Vilfan et al. (2018) 
have updated the Fluspect-B model (Vilfan et al., 2016) to simulate the 
xanthophyll composition changes to prevent the oxidative damage of 
photosystems under excessive illumination intensity. The new param
eter Cx added in Fluspect-CX model represents the proportional fraction 
of carotenoids acting in photoprotection, allowing the simulation and 
retrieval of the xanthophyll cycle dynamics function of stress and 
directly involved in the synthesis of terpenes. Fluspect-CX combined 
with a canopy model like SAIL (Verhoef, 1984, Verhoef et al., 2007) or 
similar enables the simulation of the main photosynthetic pigment 
groups and their photoprotection dynamics accounting for the structural 
effects of the canopy, permitting the retrieval of these plant traits 
through model inversion. 

This work advances the current knowledge about the remote sensing 
of wine grape quality with views at aiding vineyard management and 
selective harvesting activities. Some of the key volatile components 
included in this study give a particular character to a variety or region 
when present, even in small concentrations (Black et al., 2015). 
Although the final taste of must is the result of a combination of com
pounds and does not rely on individual molecules alone, establishing the 
links between remote sensing indicators and grape volatile components 
is the first step toward sensing and characterizing the full compositional 
matrix. 

In this study, we explored the connections between photosynthetic 
pigment composition derived from airborne imaging spectroscopy and 
grape aromatic components measured at harvest. Hyperspectral and 
thermal imagery were acquired at veraison and harvest in a commercial 
vineyard (cv. shiraz) in Victoria (Australia). The low-altitude image 
acquisition provided a very high-spatial resolution which allowed the 
automatic extraction of pure vine spectral information. The main leaf 
pigment groups, along with the dynamics of the plant photoprotective 
mechanisms, retrieved through radiative transfer model inversion and 
traditional vegetation indices were related to grape volatile components 
at harvest. Finally, the crop water stress index (CWSI, Idso et al. 1981; 
Jackson et al. 1981) was used to assess the impact of water availability 
on the pigment variability and on the final grape quality. 

2. Materials and methods 

2.1. Study site and field data collection 

This study was conducted in a commercial vineyard (Mount Langi 
Ghiran 37.31◦S, 143.14◦E) located at the base of two mount faces within 
the known as cool climate wine region (Gladstones, 2005). Five blocks of 
the variety shiraz were included in the study, where House Block 1-3 
were oriented from northwest to southeast, House Block 4 was planted 
from east to west with vine spacing of 2.8 m between rows by 1.5 m 
between vines and the Old Block oriented from northeast to southwest at 
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a spacing of 3.0 m between rows by 1.8 m between vines. All grapevines 
were planted on their own root and trained to a vertical shoot positioned 
(VSP) trellis. 

The soil type in the area is granite sandy on a clay loam sedimentary 
layer and the vines were irrigated with dripping irrigation lines installed 
along the rows. No significant pest and disease stresses were observed 
during the experimental season. Weather data was collected from the 
nearest Australian Bureau of Meteorology (BOM) weather station at 

Ararat Prison (BOM No. 089085) approximately 15.5 km northwest to 
the vineyard. The mean January, February, March maximum/minimum 
temperature recorded in vintage 2019 were 31.8/9.7◦C, 27.9/9.4◦C, 
25.7/10.9◦C, respectively. The monthly total rainfall in January, 
February, March were 1.2, 44 and 10.4 mm in vintage 2019 in com
parison to the historical average (1969-2020) of 38.5, 31.6 and 29.6 mm 
indicating the dry January and March in the studied vintage. 

A total of 43 monitoring blocks, each consisting of 3 rows of 4 vines 
were established in the summer of 2018-2019. 18 in the Old Block (OB), 
16 in the House Blocks 1 to 3 (HB1-3) and 9 in the House Block 4 (HB4). 
Plots were selected to be homogeneous in structure (vine vigour) and 
leaf pigment content and representative of the spatial heterogeneity 
existing in the vineyard. Field data was collected in each of these blocks 
during veraison and harvest. Field measurements included stomatal 
conductance with a leaf porometer device (SC-1, Decagon Devices Inc., 
Pullman, WA, USA) measured on two fully exposed mature leaves and 
pigment concentration on a representative sample of 20 leaves per block 
using a Dualex instrument (FORCE-A, Orsay, France). At harvest, the 
monitoring blocks were harvested separately and taken to the laboratory 
for further analysis. 

2.2. Airborne data collection 

Within 4 days of field data collection, a nano-hyperspectral sensor 
(Headwall Photonics, Fitchburg, MA, USA) and a thermal camera (FLIR 
A655sc, FLIR Systems, Wilsonville, OR, USA) were installed on board an 
unmanned XM2 Tango platform designed and operated by XM2 Pursuit 
(Melbourne, Australia). 

Flying operation was conducted along the solar principal plane at a 

Fig. 1. False colour composite of the hyperspectral imagery acquired over Mount Langi Ghiran Shiraz House Blocks delineated in red (a). Zoom over House Blocks 1- 
3 (top) and House Block 4 (middle right) (b) and zoom over the Old Block (c). d-f) Close-up detail for House Block 1-3 (d), House Block 4 (e) and Old Block (f). 

Table 1 
Platform and sensor operational settings during image acquisition.  

Hyperspectral sensor characteristics and settings 

Spectral range 400 – 1000 nm 
Number of spectral bands 260 
FWHM 6.5 nm 
Slit size 25 μm 
Detector pixel pitch 7.4 μm 
Focal length 4.8 mm 
Radiometric resolution 12 bits 
Integration time 18 ms 
Thermal sensor characteristics  
Spectral range 7.5 – 13 μm 
Resolution 640 × 480 pixels 
Field-of-view (FOV) 45◦

Focal length 13.1 mm 
Radiometric resolution 16 bits 
Image acquisition details 
Acquisition dates 22nd February & 17th April 2019 
Flying height (above ground level) 100 – 120 m 
Cruise speed 8 m/s 
Mean spatial resolution 0.20 and 0.15 m/px respectively  
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height between 100 and 120 m above ground level resulting in an 
average ground spatial resolution of 0.2 m for the hyperspectral and 
0.15 m for the thermal imagery. Full description of the sensors and 
image acquisition details can be found in Table 1. Fig. 1 shows the 
location and extension of the Mount Langi Ghiran vineyard including 
the Shiraz blocks imaged for this study: House Blocks 1-3 (top) and 
House Block 4 (bottom, Fig. 1b) and the Old Block (Fig. 1c). 

2.3. Assessment of grape and must composition 

Eighteen Shiraz grape bunches were sampled from each of the 
labelled sampling location on the 3rd March 2019 before commercial 
harvest and transferred on dry ice to the University of Melbourne before 
stored at -20◦C for future process. At each sampling location, Shiraz 
grape bunches were collected evenly from both sides of each row to 
achieve balanced sampling. Before laboratory analysis, all grape 
bunches were destemmed while frozen with stems, rachis, leaves, soil 
and insects removed. The remaining berries were stored at -20◦C for 
future analysis. Prior to analysis, grape berry samples were sub-sampled 
to obtain representative samples. Grape pH, total soluble solids (◦brix), 
titratable acidity (TA), relative total anthocyanins (520nm) and total 
phenolics (280nm) were measured using the standard protocol 
described by Iland (2004). 

Terpene analysis was done using a headspace solid phase micro
extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) 
system. 50 g of representative grape berry samples were firstly sub- 
sampled and then ground into powder in liquid nitrogen to homoge
nise the resulting mixture of pulp and skin and prevent the loss of vol
atile components. 5 g of powdered grape sample was weighed into 50 ml 
tube, mixed with 30 ml of extraction buffer (5 g/l of TA, 5 g/l of PVPP, 
0.5 g/l of sodium sulphite, pH 3.2) and shaken at 100 rpm for 24 h at 
20◦C in a temperature controlled incubator (ZWYR-240, Labwit Scien
tific, Ashwood, VIC, Australia). The tube was then centrifuged at 8000 g 
for 15 min and the supernatant was collected in syringe and filtered 
through a 0.45 µm nylon syringe filter (Thermo Scientific, Waltham, 
MA, USA). The filtered extract was collected in clean tube. All samples 
were prepared in triplicates. 

Free terpenes and glycosidic bound terpenes were analysed sepa
rately following this step. For free terpene analysis, 5 ml of the filtered 
extract was transferred to a 20 ml GC sampling vials containing 1 g of 

sodium chloride and 20 µl of internal standard 4-octanol (10 mg/l in 
methanol) and sealed immediately. The samples were then subjected to 
GC-MS analysis described below. For bound terpenes, solid phase 
extraction (SPE) was performed using a C18 SPE cartridge (6 ml, 500 
mg, Bond Elut, Agilent Technology, Santa Clara, CA, USA) as described 
previously (Zhang et al., 2017). C18 column was activated with 10 ml of 
methanol, followed by 10 ml of milli-Q water at a rate of 1-2 ml/min. 30 
ml of the clear grape extract from the previous step was passed through 
the activated column. Then, the column was rinsed with 10 ml of milli-Q 
water, followed by 10 ml of dichloromethane to eliminate sugars, acids 
and other free volatiles. The column was dried and eluted with 10 ml of 
methanol, and the eluate was collected in 20 ml GC sampling vials and 
dried under nitrogen gas to evaporate the methanol. The residual was 
then dissolved in 5 ml of citrate-phosphate buffer (0.1 M, pH 5) and 0.1 g 
of pectolytic enzyme was added to hydrolyse the glycosylated terpenes 
and shaken at 40◦C for 24 h. 1 g of sodium chloride and 20 µl of internal 
standard 4-octanol (10 mg/l) was then added into the vial before GC-MS 
analysis. 

Sample analysis was performed with an Agilent gas chromatography 
6850 series II connected to an Agilent 5973 mass spectrometer (Agilent 
Technology) coupled with Agilent PAL multipurpose sampler. Separa
tion was carried out using Agilent J&W DB-Wax ultra-inert column (30 
m x 0.25 mm x 0.25 µm) with helium as carrier gas (99.999% purity, 
BOC, Adelaide, SA, Australia) at 0.7 ml/min constant flow rate. Poly
dimethylsiloxane/divinylbenzene SPME fibre (PDMS/DVB, 65 µm, 
Supelco, Bellefonte, PA, USA) was exposed to the headspace of the 
sample vial for 30 min at 40◦C with agitation to extract volatile com
pounds. The SPME fibre was then desorbed at 220◦C for 10 min in 
splitless mode. The oven temperature was set at 40◦C for 4 min and 
increased to 160◦C at 3◦C/min, then increased to 230◦C at 7◦C/min and 
held at 230◦C for 8 min. The temperature of mass spectrometer quad
rupole, ion source and transfer line were set at 150◦C, 230◦C and 240◦C, 
respectively. Mass spectrometer operated in positive EI mode at 70 eV 
with mass acquisition range of 35-350 m/z. A mixed alkane standard 
with a range of C7-C30 was analysed to calculate the retention index for 
each peak in the GC analysis. Terpenes in the sample were identified by 
comparing the terpene RI values and mass spectra to NIST library 
version 11 and that of authentic standards. Quantification was con
ducted by using standard calibration curves of a series of authentic 
terpene standards including α-pinene oxide, cis-pinane, 3-carene, 

Fig. 2. Result of applying the automatic segmentation to an area with varying vine vigour (a), zoom over an individual vine and its corresponding spectrum (b) and 
spectra of the different scene components: sunlit vegetation, shaded vegetation, sunlit soil and shaded soil (c). 
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α-phellanderene, β-myrcene, α-terpinene, D-limonene, eucalyptol, 
β-trans-ocimene, γ-terpinene, p-cymene, o-cymene, terpinolene, rose 
oxide, theaspirane, linalool, terpinene-4-ol, β-cyclocitral, menthol, 
α-terpineol, nerol acetate, citronellol, β-damascone, geraniol, beta- 
ionone, thymol, trans-farnesol and cis-farnesol (Sigma-Aldrich, Castle 
Hill, NSW, Australia). The standard solution was serially diluted using 
PVPP buffer to establish the standard curves for free terpenes, and it was 
diluted using citrate-phosphate buffer to establish the second set of 
standard curves for bond terpenes. 

2.4. Spectral data analysis 

The hyperspectral imagery was radiometrically calibrated keeping 
the original instrument FWHM of 6.5 nm. Image raw data were trans
formed into radiance using calibration coefficients derived from mea
surements against a calibration standard (CSTM-USS-2000C LabSphere, 
North Sutton, NH, USA) at four integration times over four illumination 
intensities. The SMARTS model (Gueymard 1995; 2002) was used to 
conduct the atmospheric correction with the measurements collected 
with a handheld sun-photometer (Microtops II, Solar Light Co., Phila
delphia, PA, USA) at the time of the flight and air temperature, relative 
humidity and air mass measured with a portable weather station 
(WXT530 Series from Vaisala, Vantaa, Finland). PARGE software 
package (ReSe Applications Schläpfer, Wil, Switzerland) was used to 
orthorectify each hyperspectral flightline based on the readings of an 
Inertial Measuring Unit (IMU) installed on-board the airborne platform 
during the flight (a full explanation of image calibration procedure can 
be found in Suarez et al., 2021). Both the hyperspectral and thermal 
imagery were calibrated and pre-processed in the Laboratory for 
Research Methods in Quantitative Remote Sensing (QuantaLab) of the 
Spanish Council for Scientific Research (IAS-CSIC, Córdoba, Spain). For 
each block, pure vegetation pixels were selected from the imagery and 
averaged to compute the block spectral signal (Fig. 2). 

An automatic segmentation process was conducted to extract the 
spectra corresponding to each vine over the whole area. Pure sunlit vine 
pixels were selected based on thresholds established using combinations 
of the reflectance at 580, 670 and 800 nm. The resulting segmentation 
together with a zoom over an individual vine with the corresponding 
spectral signal are shown in Fig. 2a and 2b. The surrounding spectral 
signal corresponding to shaded vegetation areas, sunlit and shaded soil 
is presented in Fig. 2c. Spectral indices traditionally used for vegetation 
stress detection were calculated using the average spectral signal cor
responding to each block for both veraison and harvest acquisition 

times. The index selection comprises structural indices typically related 
to vigour and foliage density and indices used to assess pigment con
centration and photoprotection mechanisms (Table 2). Indices linked to 
chlorophyll degradation calculated from bands in the blue region (Zar
co-Tejada et al., 2018) were added as the chlorophyll breakdown is an 
important catabolic process of fruit ripening and synthesis of volatile 
compounds (Hörtensteiner and Kräutler, 2011). For the image analysis, 
all blocks were used at veraison, when they were further grouped in 
homogeneous groups based on spatial proximity. 

At harvest, four of the blocks were already in senescence and the 
image data from those blocks was not analysed, only points in the Old 
block that were still not harvested were used for further analysis. 

The crop water stress index (CWSI) was also calculated as an indi
cator of water stress variability in the site. It was computed using the 
canopy-air temperature difference and the water vapour pressure deficit 
(VPD) measured at the time of the image acquisition (Idso et al. 1981; 
Jackson et al. 1981). For the upper and lower limits, the equations 
published by Bellvert et al. (2014) for wine grape cv. shiraz were used. 

Table 2 
List of spectral vegetation indices used in the study with their formulation and original reference. Rλ refers to reflectance at λ nm.  

Index Formulation Reference 

Blue Region indices 
NPQI (R415 – R435) / (R415 + R435) Peñuelas et al. (1995) 
BF1 R400 / R410 Zarco-Tejada et al. (2018) 
BF4 R400 / R440 Zarco-Tejada et al. (2018) 
Green Region indices related to carotenoids and photoprotection 
PRI (R570 – R530) / (R570 + R530) Gamon et al. (1992) 
PRI•CI ((R570 – R530) / (R570 + R530)) ⋅ ((R760 / R700) – 1) Garrity et al. (2011) 
CAR R515 / R570 Hernandez-Clemente et al. (2012) 
Chlorophyll content indices 
TCARI/OSAVI 3⋅ ((R700 − R670) − 0.2 (R700 − R550) ⋅(R700 / R670))

(1 + 0.16) ⋅(R800 − R670) / (R800 + R670 + 0.16)
Haboudane et al. (2002) 

LIC3 R440 / R740 Lichtenthaler et al. (1996) 
RARS R746 / R513 Chappelle et al. (1992) 
PSSRc R800 / R470 Blackburn (1998) 
Red-edge indices 
VOG R740 / R720 Vogelmann et al. (1993) 
GM R750 / R550 Gitelson and Merzlyak (1997) 
CI R750 / R710 Zarco-Tejada et al. (2001) 
Structural indices 
NDVI (R800 - R670) / (R800 + R670) Rouse et al. (1974) 
RDVI (R800 - R670) / (R800 + R670)0.5 Rougean and Breon (1995) 
OSAVI (1 + 0.16) ⋅ (R800 - R670) / (R800 + R670 + 0.16) Rondeaux et al. (1996)  

Table 3 
Input parameter ranges used for FluSAIL.  

Parameter Definition Unit Range / Value 

Leaf thickness and constituents 
N Leaf structural parameter [-] 1 – 2.5 
Cab Chlorophyll a & b content μg/cm2 20 – 80 
Ccar Carotene content μg/cm2 5 – 20 
Cant Anthocyanin content μg/cm2 0 – 5 
Cw Leaf water content g/cm2 0.001 – 0.05 
Cm Leaf dry matter content g/cm2 0.001 – 0.05 
Cs Brown pigment content μg/cm2 0 
Leaf dynamic biochemistry 
Cx Proportional fraction of carotenoids  

acting in photoprotection 
[-] 0 – 3 

fqeI Fraction of photons partitioned to PSI [-] 0.002 
fqeII Fraction of photons partitioned to PSII [-] 0.02 
Canopy structural parameters 
LAI Leaf area index m2 / m2 0.3 – 5 
q Hot spot parameter [-] 0.1 
LIDFa Leaf Inclination Distribution Function  

parameter a 
[-] -1 – 1 

LIDFb Leaf Inclination Distribution Function  
parameter b 

[-] -1 – 1  
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Fig. 4. Result of inverting the 3 main pigment pools and LAI using the wavelet inversion method with a synthetic LUT *p-value<0.05; **p-value<0.01; ***p- 
value<0.001; n.s.=not significant. 

Fig. 3. Wavelet transform amplitude obtained for the whole range of input variation a) before applying any normalisation and b) after normalizing by dividing for 
the maximum of each scale. 
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2.6. Radiative transfer model inversion of plant traits 

Fluspect-CX model (Vilfan et al., 2018) code was integrated with 
4SAIL canopy code (Verhoef et al., 2007) to create a coupled leaf-canopy 
model that allows the simulation of canopy reflectance for a range of 
biophysical and biochemical parameters presented in Table 3. 

The reason of using the recently developed Fluspect-CX was to derive 
an indication of the epoxidation state (EPS) of the xanthophyll pigments 
together with the rest of pigments (chlorophyll, carotenoids and an
thocyanins) included in previous Fluspect model versions (Vilfan et al., 
2016). We hereafter refer to the coupled leaf-canopy model as FluSAIL. 

A 2-step inversion approach was undertaken to derive canopy bio
physical and biochemical traits from image hyperspectral signal. A look- 
up-table (LUT) with 600,000 entries was generated using the full range 
of variation of the input parameters expected in a vineyard (see Table 3 
for reference), illumination geometry at the time of the data capture and 
an average soil spectrum extracted from bare soil areas in the hyper
spectral image. 

The inversion was conducted based on wavelet transformed spectra. 
The use of wavelet transformation allows quantifying the magnitude of 
overlapping spectral features resulting from changes in canopy compo
sition and functioning. This technique allows the analysis at different 
spectral scales, eliminating the confounding effects of both wide and 
narrow spectral features (Mittermayr et al., 2001) and has been sug
gested as a method to minimise the effects of canopy structure when 
deriving pigment composition (Blackburn, 2006). This method has been 
used in the past to invert plant traits from hyperspectral imagery 
(Blackburn and Ferwerda, 2008; Cheng et al. 2011; Kattenborn et al., 
2017). 

The second degree gaussian wavelet amplitude corresponding to 
each spectrum in both the image and the LUT was calculated for all 
spectral bands over 10 scales. As each plant trait has an effect on the 
spectral signal through features of different widths, all scales from 1 to 
10 were used equivalent to characterising spectral feature widths be
tween 9 and 90 nm. When using the wavelet transforms over the 10 
scales, the amplitudes for each scale were normalised by dividing be
tween the local maximum amplitude (WVLλ,norm) as shown in Fig. 3. 

This step avoided overfitting the inversion for the parameters 
affecting larger scales where the amplitude is higher in comparison to 
lower scales (Torrence and Compo, 1998). Fig. 3 shows the wavelet 
transformations of 300 simulations resulting from the full range of 
variation over the 10 scales, and the corresponding normalised spectra. 
All plant traits were retrieved as the average of the 50 closest WVLλ,norm 
entries in the LUT using the root mean square error (RMSE) as cost 
function. 

Before applying it to the whole dataset, the methodology designed 
for this study was tested over 1000 simulations extracted from the 
600,000 LUT corresponding to random inputs with a uniform distribu
tion within the input ranges in Table 3. The theoretical results obtained 
for the main pigment groups and LAI are presented in Fig. 4. 

A second inversion step was carried out to retrieve Cx. For each point, 
a new 500 entry-LUT was generated using the inputs retrieved in the first 
step and Cx varying fully from 0 to 3. Due to the localised and narrow 
effect of Cx in the spectra, only the wavelet amplitude calculated for the 
first three scales over the green spectral region was used to determine 
the closest simulation each image spectrum based on the root mean 
square distance. Inversion was conducted using a fraction of the spec
trum previously determined by simulating the effect of Cx variation on 
the wavelet transform using the spectral sensor configuration (band 
centre and width). 

The model inversion method was applied to the average signal of 
every vine extracted through the above-mentioned automatic segmen
tation. This allowed creating interpolated maps of chlorophyll content 
and the product Ccar•Cx as an indication of the total carotenoids acting in 
photoprotection over the whole study site. The spatial interpolation, 
conducted for visualisation purposes was performed using the natural 

neighbour algorithm (Sibson, 1981). 

3. Results 

3.1. Field and laboratory data 

The analysis of the measurements conducted in the field demon
strates a high level of variability in pigment concentration and stomatal 
conductance (gs) (Table 4). This variability could be partly attributed to 
a long-term effect of the water availability differences in an undulated 
terrain with a sandy upper layer. This is demonstrated with the signif
icant correlation found between chlorophyll content measured in the 
field and the difference between canopy and air temperature (Tc-Ta) 
(Fig. 5).  

3.2. Link between remote sensing indicators and grape composition 

The radiative transfer model inversion based on wavelet transforms 
of the pure vine spectra yielded a good spectral fit for all blocks (Fig. 6) 
indicating the robustness of the methodology presented. 

The Pearson coefficients obtained for the relationships between 
grape compounds (Table 5) and different vegetation indices extracted 
from the hyperspectral image at veraison are presented in Table 6. All 
the indicators based on leaf pigment composition and pigment degra
dation showed a strong significant correlation with major terpenes in 
free form responsible for the final grape and wine aroma (p-values <
0.01). Weaker relationships were found between structural indices 
related to vigour and vine growth like NDVI or RDVI. No significant 
correlations were found when comparing grape composition parameters 
with spectral indices calculated from the imagery collected at harvest 
(data not shown). 

Indicators quantified through model inversion outperformed spectral 
indices yielding stronger correlations with a wider range of grape vol
atile compounds (Table 7). Chlorophyll content derived through model 
inversion shows the best predicting potential for free terpene composi
tion overall. Spectral indices typically used for chlorophyll content 
estimation like TCARI/OSAVI, although highly correlated, did not pre
sent the same strength (Fig. 7). Both leaf chlorophyll a+b and carotenoid 
content derived from model inversion at veraison present a negative 
correlation with terpenes like terpinolene and limonene but a positive 
correlation with linalool (Table 7 and Fig. 7). The opposite is found for 
anthocyanins which are positively correlated to terpinolene and limo
nene but show an inverse correlation with linalool. α-Terpineol and 
linalool were found to be more related to the carotenoids composition 
and the proportion of xanthophyll pigments acting in the photo
protective processes function of stress both in relative (Cx, r2= 0.64; p- 
value = 0.002) and absolute terms (Ccar•Cx, r2= 0.71; p-value = 0.001). 
PRI, as a spectral index developed to track xanthophyll composition 
changes, showed a trend (r2= 0.45; n.s.) although not statistically sig
nificant (Fig. 8). No statistically significant relationships were found 
with terpenes in bound form, bound content is highly dependent on β-d- 
glucosyltransferase (Zhang et al. 2017) which pattern differs from 
terpene synthases. 

At harvest, the only indicators that showed a strong significant 

Table 4 
Overview of the leaf measurements acquired in the field between veraison and 
harvest.  

Indicator Mean Minimum Maximum Standard deviation 

Chlorophyll a+b (a.u.) 25.86 19.13 34.48 2.98 
Flavonoids (a.u.) 2.20 2.05 2.41 0.06 
Anthocyanins (a.u.) 0.16 0.13 0.21 0.02 
NBI (a.u.) 11.79 8.79 15.76 1.35 
gs (mmol/m2•s) 175.44 102.09 297.99 55.60  
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correlation with grape composition were the ones related to the 
xanthophyll pigment composition as function of stress (Table 7). In this 
instance, PRI, potentially affected by other pigment composition 
changes, did not present any correlation (Fig. 9). 

The automatic segmentation of the whole vineyard allows applying 
the same inversion method to all vines and represent the variability of 
the pigment composition and stress indicators related to xanthophyll 
cycle activity. Fig. 10 shows the interpolated result for chlorophyll 
content (Fig. 10a) and carotenoid acting in photoprotection Ccar•Cx 
(Fig. 10b) across all House Blocks after retrieving all biophysical and 
biochemical parameters through model inversion using pure vine 
spectral information. 

Statistically significant relationships were found between the CWSI 
as an established indicator of water stress and chlorophyll a+b both 
measured in the field and derived from model inversion, suggesting 
differences in water availability across the field might partially drive the 
existing variability in chlorophyll content. The weaker link between 

CWSI and grape terpene concentration as compared to the relationships 
obtained with pigment concentration demonstrate, though, that water 
stress is not the only driver of the final grape composition as shown in 
Fig. 11 and Tables 6 and 7. 

4. Discussion 

While the value of other crops is measured by biomass or fruit weight 
at harvest, the market value of wine grapes heavily relies on grape 
quality, particularly aromatic compounds which have an impact on the 
final quality and character of the wine produced (Yegge and Noble, 
2001). The constituents that are responsible for this aromatic character 
are the terpenoids, unsaturated hydrocarbons with strong odours 
generally synthetised to attract pollinators or protect against herbivores 
and pathogens (Suckling et al., 2012; Muhlemann et al., 2014; Boachon 
et al., 2015). There is extensive literature on the synthesis pathways of 
terpenes (Black et al., 2015, Li et al., 2020), but there are still some 
unknowns about the complex triggering mechanisms of such synthesis 
and particularly their remote detection. Imaging such compounds prior 
to harvest would allow prioritising and separating the outcome of blocks 
with more promising market value (Bramley et al., 2011). 

In this research, leaf pigment concentration and degradation as 
function of stress explained the variability found in some of the main 
terpenes present in the grape at harvest. The use of high-spatial reso
lution hyperspectral imagery allowed the automatic selection of pure 
sunlit vine areas avoiding known uncertainties found when using mixed 
vegetation-soil pixels in vineyards (Suarez et al., 2010). The method 
used to invert plant traits through radiative transfer model inversion 
based on wavelet transforms was proven to retrieve plant traits accu
rately as can be seen in Fig. 4 and later demonstrated with the spectral fit 
presented in Fig. 6, for blocks with varying vigour, age and row 
orientation. 

Fig. 5. Relationships between Tc-Ta derived from thermal airborne imagery and field data collected for a) stomatal conductance and b) chlorophyll content at 
veraison. *p-value<0.05; **p-value<0.01; ***p-value<0.001; n.s.=not significant. 

Fig. 6. Comparison between image spectra and corresponding model inversion for one of the sampling points in the Old block (a), House Blocks 1-3 (b) and House 
Block 4 (c). 

Table 5 
Overview of the grape composition variability across all plots.  

Indicator Mean Minimum Maximum Standard deviation 

Brix 27.01 23.55 31.35 1.98 
pH 3.891 3.453 4.175 0.162 
Colour (a.u.) 2.514 1.945 3.302 0.279 
Phenolics (a.u.) 1.902 1.557 2.564 0.203 
α-Terpineol (μg/kg) 1.100 0.479 1.864 0.352 
Terpinolene (μg/kg) 1.043 0.436 1.731 0.397 
D-Limonene (μg/kg) 0.527 0.000 1.064 0.348 
β-Ionone (μg/kg) 0.004 0.001 0.006 0.001 
Linalool (μg/kg) 0.276 0.094 0.471 0.087 
Geraniol (μg/kg) 1.547 1.403 1.841 0.094 
Nerol (μg/kg) 0.064 0.038 0.100 0.014  
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The results of the correlations between traits and grape composition 
demonstrate that quantitative plant traits derived from radiative trans
fer model inversion outperform any other method based on vegetation 
indices related to structure, physiology, pigment composition or 
pigment degradation (Tables 6 and 7). The main leaf pigment groups, 
chlorophylls, carotenoids and anthocyanins derived at veraison were 
found to explain the terpene concentration variability better than any 
other trait. This is in agreement with Sanchez et al. (2021) suggestion 
that foliar chlorophyll content, measured at veraison, could be a useful 
tool in precision viticulture for the early characterisation of the grape 
aromatic potential. At the same time, the degradation of chlorophyll into 
secondary pigments has been related to the plant defence mechanisms to 
the attack of pests (Barnes et al., 1992; Peñuelas et al., 1995) and the 
same process involves the synthesis of terpenes (Howe and Jander, 
2008). Although vegetation indices commonly used to assess chloro
phyll concentration presented significant relationships with terpene 
concentration, they did not achieve equivalent results to the ones with 
chlorophyll content quantified through model inversion (Fig. 7). 

The link between carotenoids, including xanthophylls and terpenes 
is direct as they share biosynthetic pathways (Black et al., 2015). Ca
rotenoids presented a very high correlation to chlorophyll, explaining 
both pigment groups showing very similar results against terpinolene, 
D-limonene and linalool (Table 7). The role of carotenoids in grape 
berries has been found to be more similar to that of leaves as opposed to 
other crops where they play a major role in the skin colour of ripe fruits 
(Lin et al., 2019). During berry ripening, there is a simultaneous decrease 
in carotenoid content and increase in norisoprenoid which are carot
enoids derivatives contributing to the aroma in wine grapes. Previous 
studies have also linked the illumination intensity and spectrum to the 
final terpene composition (Carbonell-Bejarano et al., 2014), which 
directly links the photoprotective processes to the synthesis of linalool 
and other terpenes (Peñuelas and Llusia, 2002; Joubert et al., 2016). 
Xanthophyll pigment composition varies with changing light intensity to 
protect the photosystems from oxidative damage (Demmig-Adams and 
Adams, 1996). Cx is an indicator of the xanthophylls that are partly 
dissipating the incoming radiation as to the total carotenoid concen
tration. Both Cx and the product Ccar•Cx was found to track the vari
ability of α-terpineol, terpinolene, linalool and nerol at veraison 
(Table 7). Fig. 8 and Table 6 show how spectral indices like PRI, 
developed to assess xanthophyll composition dynamics did not achieve 
the same, potentially due to the effects of canopy structure, varying row 
orientation and illumination geometry on the index (Suarez et al., 2008; 
Suarez et al., 2010). 

Leaf pigment composition at harvest did not show any correlation 
with aromatic components in the grapes. It is known there is an abrupt 
change in the chlorophylls and carotenoids pigment pools towards 
senescence (Filimon et al., 2016). Chlorophyll content derived from 
model inversion at harvest was at average, 15 μg/cm2 lower than at 
veraison, while anthocyanin content increased by 2 μg/cm2 on average 
(data not shown). The results in Table 7 show the pigment concentration 
derive at harvest was not correlated to the variability found in the grape 
terpene concentration. On the other hand, Cx and Ccar•Cx was found to 
correlate with Terpinolene, Limonene and β-Ionone, the latter being a 
direct subproduct of zeaxanthin degradation (Black et al., 2015). Weaker 
correlations were found with other norisoprenoids, which might be due 
to the activation of individual enzymes associated with their biosyn
thesis. This is very common as different norisoprenoids have different 
accumulation pattern during ripening (Luo et al. 2019). Although the 
major leaf pigment pools at harvest were not providing much informa
tion about the grape aromatic parameters, plant traits related to 
photosynthetic efficiency did. Vegetation indices like PRI used as a 
proxy of the xanthophyll composition did not yield any good correlation 
(Fig. 9). 

The availability of water during the grape growing period has been 
related in the past to final composition (Serrano et al., 2012). Here we 
assessed the impact of water stress on the final grape composition using Ta
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the CWSI. The CWSI has been demonstrated to be a robust indicator of 
water stress across species (Berni et al., 2009; Gonzalez-Dugo et al., 
2020) being an indicator used to monitor and assist irrigation man
agement in vineyards (Bellvert et al., 2015). For this study, we used the 
baseline equations by Bellvert et al. (2014) for grapes of variety shiraz. 
We found temperature and the CWSI to be highly correlated to leaf 
conductance measured in the field (r2=0.51, p-value= 0.002) as an in
dicator of water stress and chlorophyll (r2= 0.58, p-value= 6E-5) indi
cating water stress is one of the drivers of pigment variability in the 
vineyard (Fig. 5). These results were further supported by the significant 
relationships found between the CWSI and pigment concentrations 
measured in the field and derived from RTM inversion (r2= 0.51 – 0.58, 
p-value= 1E-9 – 6E-5, Figs. 5 & 11). The CWSI could not, though, fully 
explain the variability in grape composition, as indicated in Fig. 11. 
These results suggest that, although the variable water availability and 

water stress suffered during the fruit growing period is partially driving 
leaf pigment concentrations and plant physiological processes affecting 
terpene synthesis, there are other factors contributing to the final grape 
composition. 

Sensor and platform advancements allowing the acquisition of high- 
spatial and spectral resolution provide the means to assess and map 
vineyard areas with special characteristics that may lead to signature 
grape aromatic compounds resulting in added value for the wine market. 
Previous studies have demonstrated how important it is to select pure 
sunlit canopy spectra for the accurate retrieval of plant photosynthetic 
traits such as pigments (Zarco-Tejada et al., 2013) or pigment degra
dation processes related to stress (Suarez et al., 2010). Light hyper
spectral sensors like the Nano Hyperspec can be flown using drones 
flying at low altitudes providing resolutions ~ 20cm/px and allowing 
the extraction of pure sunlit vine spectra. Here we demonstrate how this 

Fig. 7. Relationships found between TCARI/OSAVI as a chlorophyll indicator versus three terpenes (a-c) compared to chlorophyll content derived from model 
inversion versus the same terpenes (d-f) at veraison. *p-value<0.05; **p-value<0.01; ***p-value<0.001; n.s.=not significant. 

Table 7 
Pearson coefficients obtained for the correlations between biophysical and biochemical properties derived from FluSAIL model inversion and grape composition 
indicators.   

Veraison Harvest  
Cab Cant Ccar Cx Ccar•Cx Cdm LAI Cab Cant Ccar Cx Ccar•Cx Cdm LAI 

◦Brix -0.35 0.12 -0.44 -0.15 -0.30 0.23 -0.27 -0.28 0.20 0.32 -0.16 -0.07 0.00 -0.18 
pH 0.17 -0.19 0.28 0.38 0.42 -0.04 -0.08 0.01 -0.22 -0.21 -0.35 -0.41 -0.29 -0.09 
Colour 0.27 -0.44 0.28 0.00 0.12 -0.13 -0.18 -0.30 -0.28 -0.02 -0.31 -0.34 0.28 -0.13 
Phenolics 0.24 -0.46 0.25 0.03 0.13 -0.21 -0.21 -0.02 -0.33 0.06 -0.34 -0.34 -0.10 0.15 
α-Terpineol 0.52 -0.52 0.47 0.80** 0.85** 0.25 -0.51 0.17 0.20 0.23 0.09 0.15 -0.10 -0.11 
Terpinolene -0.91** 0.91** -0.78** -0.34 -0.61* -0.42 0.39 0.03 -0.53 0.44 -0.71** -0.61* -0.30 0.34 
D-Limonene -0.91** 0.85** -0.85** -0.26 -0.57 -0.34 0.13 -0.14 -0.25 0.53 -0.55* -0.42 0.04 0.07 
β-Ionone 0.46 -0.65* 0.40 -0.11 0.08 -0.19 -0.04 -0.08 -0.53 -0.32 -0.61* -0.72** -0.10 0.23 
Linalool 0.77** -0.58* 0.79** 0.58* 0.81** 0.40 -0.17 0.16 -0.14 -0.24 -0.31 -0.39 -0.34 -0.07 
Geraniol 0.06 -0.05 -0.07 0.09 0.06 -0.03 -0.34 0.12 -0.58* 0.10 0.15 -0.26 -0.26 0.13 
Nerol 0.26 -0.41 0.17 0.62* 0.26 -0.20 -0.53 0.36 0.11 0.39 -0.11 0.36 -0.41 0.19 

*p-value<0.05; **p-value<0.01 
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image acquisition settings allow the accurate mapping of vine properties 
over full blocks and map the spatial variability of traits that are later on 
related to grape quality. Variability maps can then be used to plan se
lective harvest operations based on spatially explicit information on 
grape composition and potentially added value to the final product even 
when production is geared to large volumes (Bramley et al., 2011). 

5. Conclusion 

In this study we show how leaf pigment composition and dynamics as 
function of stress could explain the variability in aroma components in a 
commercial vineyard (cv. shiraz). Chlorophyll, carotenoid and antho
cyanin content derived from radiative transfer model inversion at 
veraison outperformed traditional techniques based on vegetation 
indices to track grape composition. The fraction of carotenoids acting in 

photoprotective mechanisms under stress was highly correlated to spe
cific terpenes measured in the grape. This work advances the detection 
of fruit quality, establishing the links between grape aroma components 
and plant traits, demonstrating their accurate detection in vineyards. We 
show how mapping wine grape quality is achievable through physical 
modelling inversion using very-high spatial resolution hyperspectral 
imagery, allowing the selective harvest of vineyard areas resulting in 
added wine character and value in the market. 
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Fig. 8. Relationship between α-Terpineol and PRI as a spectral indicator of the xanthophyll composition changes under stress (a), α-Terpineol and total carotenoid 
content (b) and α-Terpineol with Cx (c) and Ccar•Cx (d) derived from FluSAIL model inversion. *p-value<0.05; **p-value<0.01; ***p-value<0.001; n.s.=
not significant. 

Fig. 9. Relationship between β-Ionone, sub-product of the photoprotective xanthophyll zeaxanthin and PRI as spectral indicator of the xanthophyll photoprotection 
state (a), Cx as the proportion of carotenoids acting in the photoprotection mechanisms (b) and the total carotenoid content acting in the photoprotection mechanism 
calculated as Ccar•Cx (c). *p-value<0.05; **p-value<0.01; ***p-value<0.001; n.s.=not significant. 
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Šuklje, K., Antalick, G., Coetzee, Z., Schmidtke, L.M., Baša Česnik, H., Brandt, J., du 
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