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New Approaches to Plant Pathogen Detection and Disease Diagnosis
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Abstract

Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone
significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture.
Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled
improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota,
including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor
technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar
symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease
surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.

Keywords: bioinformatics, biotechnology, disease control and pest management, epidemiology, microbe-genome sequencing, microbiome, modeling,
pathogen detection

Although molecular biology or remote sensing technologies have
made considerable progress, it is now possible to develop rapid,
sensitive, specific, and precise detection and diagnostic protocols.
However, some unresolved aspects remain, such as the need to
demonstrate the viability and actual infective capacity of the or-
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ganisms detected within plant microbiota when molecular tests are
applied. Additionally, improving the accuracy of remote sensing
detection models, particularly in disentangling biotic versus abiotic
induced symptoms, remains a challenge. In this review, we provide
a concise description of some of these new technologies, discuss
their practical applications, and address some aspects that require
further investigation.

The goal of sustainable agriculture is to fulfill the food needs of
the ever-expanding global population while concurrently fostering
sustainable economic development of agricultural areas. Plant dis-
eases are one of the main factors limiting agricultural production
and threaten the global food supply (Jeger et al. 2023; Ristaino et al.
2021; Savary et al. 2019). Throughout history, efforts have been
made to combat pests and diseases to minimize the resulting losses
from the damage they cause. Disease control measures encom-
pass strategies including preventing a pathogen’s entry into specific
areas and eradicating or managing a pathogen when it is already
reported in an area (Spadaro and Gullino 2019). Accurate detec-
tion and identification of a pathogen are essential because they can
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provide crucial information about its ecology, the potential threat
it represents to crops, and information regarding the implementa-
tion of appropriate management practices to reduce any deleterious
impacts (Koebnik et al. 2023).

The evolution of detection methods has been an iterative process,
adapting in response to the technological capabilities in each era
(Martinelli et al. 2015; Venbrux et al. 2023). The simple observation
of visual symptoms, which is often the initial diagnostic strategy,
is frequently insufficient to determine the causal agent of a disease.
Even if symptoms are evident, diagnosis is not always straightfor-
ward. This challenge is not exclusive to plant diseases and occurs
in diagnosis in other fields, as exemplified in human clinics by
the recent COVID-19 pandemic, whose symptoms closely resem-
ble those of common flu-like viruses or even mild colds (Czubak
et al. 2021; Gardiner et al. 2012). There are numerous examples
with plant diseases where misidentification is possible; for instance,
tumors caused by Agrobacterium are very apparent but can some-
times be mistaken as plant genetic aberrations or, occasionally, as
nematode-induced galls (Choi et al. 2019). Moreover, foliar discol-
oration caused by any plant pathogen can frequently be mistaken
for a physiological nutrient deficiency. Different bacteria belonging
to the genus Xanthomonas that infect citrus cause similar symp-
toms at the onset of the infectious processes. However, depending
on the specific species of Xanthomonas, the infection may lead
to citrus canker or citrus bacterial spot. The former is considered
a very serious and quarantine-worthy disease in many countries,
whereas the latter is a disease of less concern and is not usually
regulated (Graham et al. 2004). The specific needs of a situation
can dictate the diagnostic method to be used. Returning to the par-
allel between plant diseases and COVID-19, the first step taken to
control the pandemic was the development of reliable diagnosis
strategies to identify the pathogen, which ranged from immediate
virus detection, using serological lateral flow devices, to less imme-
diate but more sensitive and precise methods based on quantitative
PCR (qPCR) (Rong et al. 2023).

In plant pathology, the situation parallels this reality, where de-
tecting and identifying the pathogen are crucial steps in managing
diseases, and the situation dictates the diagnostic method to use. For
instance, to evaluate on-site disease incidence within a specific ge-
ographical area, a quick analysis of a large number of samples may
be necessary, with an emphasis on speed rather than accuracy or
sensitivity (Cambra et al. 2000; Hornero et al. 2020; Zarco-Tejada
et al. 2018). Conversely, in cases where precise identification of a
specific type of pathogen is required, such as one that necessitates
molecular characterization, a very accurate diagnosis is essential.
This approach may render the analysis of an extensive sample set
unfeasible, thereby de-emphasizing the importance of speed. Un-
fortunately, achieving both speed and precision in a single method is
not always possible, requiring different detection strategies for the
two needs. Organizations such as the American Phytopathological
Society, the European and Mediterranean Plant Protection Organi-
zation, and the International Seed Testing Association have outlined
a set of criteria in terms of sensitivity, specificity, selectivity, re-
peatability, reproducibility, robustness, and accuracy that detection
methodologies must meet to be validated (Cardwell et al. 2018;
EPPO 2021a, b, 2022a, b; Groth-Helms et al. 2023; ISTA 2006)
(Table 1). Multiple studies describe these validation processes con-
ducted by various research groups for a variety of pathogens (Cellier
et al. 2020; Junker et al. 2018; Sarniguet et al. 2013).

This article presents a comprehensive review of pathogen de-
tection strategies and plant disease diagnosis. However, our intent
transcends the mere compilation of articles on all available tech-
niques, as some reviews have already covered this aspect (Martinelli
et al. 2015; Venbrux et al. 2023). Instead, we focus on and dis-
cuss two major strategies that are currently yielding exceptional
outcomes and that are poised to serve as the keystone of plant dis-
ease diagnosis in the future. The first approach describes the use of

nucleic acids and the diverse technologies employed in their detec-
tion, involving either precise targets of specific pathogen genomes
or the relatively recent use of entire nucleic acid content to iden-
tify pathogens within the plant’s global microbiome. Within this
strategy, we place special emphasis on next-generation sequenc-
ing (NGS) techniques, which have already demonstrated significant
utility and undoubtedly are destined to underpin laboratory diagno-
sis in the future (Lebas et al. 2022). The second set of strategies that
we address encompasses imaging spectroscopy and remote sensing
techniques for disease detection. These approaches have undergone
significant advances in recent decades, but significant diagnostic
challenges remain in developing, refining, and applying them in the
coming years (Cheshkova 2022; Singh et al. 2020).

Nucleic Acid-Based Detection
and Diagnosis Methods

Recently, nucleic acid-based techniques have replaced many
conventional detection approaches. Conventional methods often re-
quire the prior isolation of pathogens in culture media, as with
bacteria, fungi, or oomycetes, and subsequently their identifica-
tion. Alternatively, serological approaches may be utilized and have
proven particularly useful, for example, in the case of viruses. In-
deed, serological methods have not always been replaced by nucleic
acid-based technologies, especially when antisera, antibodies, and
specific tests are available, sufficiently accurate, and sometimes al-
ready commercialized. However, in the absence of such resources,
the development of serological tests can be more challenging and
time-consuming compared with molecular methods. Thus, methods
such as the enzyme-linked immunosorbent assay remain relevant in
certain situations, particularly for extensive or routine screenings
(De Boer and López 2012; Fang and Ramasamy 2015; Kalimuthu
et al. 2022; Venbrux et al. 2023) when speed is prioritized over
factors such as sensitivity and precision. Furthermore, serological
methods, including devices similar to those used in clinical settings,
are still being developed (Byzova et al. 2018; Hodgetts et al. 2015;
López-Soriano et al. 2017).

Nucleic acid-based techniques have proliferated primarily due to
their advantages in terms of sensitivity and specificity. Regulatory
agencies, such as the European and Mediterranean Plant Protection
Organization, primarily include PCR-based methods, either con-
ventional or real-time, in their guidelines, which are usually adopted
by official diagnostic protocols (EPPO 2023). An essential aspect
to consider in PCR protocols is the need to fine-tune the specificity
of diagnostic reactions. A meticulous selection of sequences that
unequivocally identify a pathogen is imperative. In this regard, ge-
nomic analyses have gained particular importance in recent years, as
they are indispensable for a better knowledge of pathogens and the
elements within their genome that distinguish them as that organ-
ism (Catara et al. 2021; Gardiner et al. 2012; Garita-Cambronero
et al. 2017).

Although specificity, sensitivity, and speed in obtaining results
are argued as positive factors of nucleic acid-based techniques, they
also present a limitation: They detect microorganisms in any physi-
ological state or just inert traces of DNA or RNA molecules from the
deceased microorganisms (Cangelosi and Meschke 2014; Emerson
et al. 2017). The dilemma of specifically detecting viable organ-
isms may be particularly relevant in the case of reproductive or
postharvest materials. For instance, detecting traces of nucleic acid
from a virus, bacterium, or fungus in treated or disinfected fruits or
seeds may not be significant because the pathogen will be unable to
spread from the fruit or, in the case of a seed-transmitted pathogen,
to produce a diseased plant (Narayanasamy 2011). Nowadays, the
need to detect microorganisms solely in a viable state is a subject
of intense debate, and various amplification strategies are briefly
discussed and described in the next section (Hiddink et al. 2023).
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TABLE 1
Comparison of the definitions of terminologies used in detection and diagnostics by The American Phytopathological Society, the

European and Mediterranean Plant Protection Organization (EPPO), and the International Seed Testing Association (adapted from the
EPPO document: https://upload.eppo.int/download/221odbcdc6308)

Organization Equivalent terms used by the different organizations

The American
Phytopathologi-
cal Society
(Cardwell et al.
2018;
Groth-Helms
et al. 2023)

Sensitivity
(analytical):
Synonymous
with “limit of
detection”;
smallest
detectable
amount of
analyte that can
be measured
with a defined
certainty.
Analyte may
include
antibodies,
antigens,
nucleic acids, or
live organisms.

Sensitivity
(diagnostic):
Proportion of
known infected
reference
samples that
test positive in
the assay;
infected plants
that test
negative are
considered to
have
false-negative
results.

Sensitivity
(relative):
Proportion of
reference
samples defined
as positive by
one or a
combination of
test methods
that also test
positive in the
assay being
compared.

Specificity
(diagnostic):
Proportion of
known uninfected
reference plants
that test negative
in the assay;
uninfected
reference plants
that test positive
are considered to
have
false-positive
results.

Selectivity:
Capability to
discriminate
between the
organism of
interest and
other organisms
and
components of
the sample,
such as host
tissue. In binary
analysis,
selectivity is the
equivalent of
global accuracy
taking into
account all false
reactions, both
positive and
negative.

Repeatability:
Level of
agreement
between
replicates of the
same sample in
the same exact
conditions by
the same
operator,
equipment, and
reagents. For
example, the
test repeated by
analyst A on
instrument ABC
using reagent
lot XYZ on the
same day (VIM
2008).

Reproducibility:
Ability of a test
method to
provide
consistent
results for the
same sample
tested by the
same method in
different
laboratories
(VIM 2008).

Robustness:
Assessment of
an assay or
material to
produce
expected results
when subjected
to testing outside
its verified range
of use (ICH
2005). Changes
in variables such
as temperature,
humidity, and
stability can be
observed to
verify whether
the assay or
material will
maintain its
validated
characteristics
when
mishandling
occurs or if there
is a moderate
risk that test
conditions
cannot be
adequately
controlled.

Accuracy:
Assessment of
nearness of a
test value to the
expected value.
The expected
value may be
obtained from a
known
reference
standard,
reagent of
known activity,
or well-
documented
titer. This term
may be used in
other fields and
regions to
represent both
trueness (ICH
2005) and bias
(ISO/IEC 2008)
or is an umbrella
term broken
down into
specific
categories of
trueness and
bias to evaluate
systematic error
(VIM 2008).

European and
Mediterranean
Plant Protection
Organization
(EPPO 2018,
2021a, b,
2022a, b)

Analytical
sensitivity:
Smallest
amount of
target that can
be detected
reliably.

Diagnostic
sensitivity:
Proportion of in-
fected/infested
samples testing
positive
compared with
results from an
alternative test
or with the
assigned values
of samples.

Diagnostic
specificity:
Proportion of
uninfected/
uninfested
samples testing
negative
compared with
results from an
alternative test or
with the assigned
values of
samples.

Analytical
specificity
(comprises
inclusivity and
exclusivity):
Inclusivity:
Performance of
a test with a
range of target
organisms
covering genetic
diversity,
different
geographical
origin, and
hosts.
Exclusivity:
Performance of
a test with
regard to
cross-reaction
with a range of
nontargets.

Selectivity:
Extent to which
variations in the
matrix affect the
test
performance
(matrix effect).

Repeatability:
Level of
agreement
between
replicates of a
sample tested
under the same
conditions.

Reproducibility:
Ability of a test
to provide
consistent
results when
applied to
aliquots of the
same sample
tested under
different
conditions.

Robustness of a
test: Extent to
which altered
test conditions
affect the
established test
performance
values (e.g.,
analytical
sensitivity,
analytical
specificity).

Accuracy:
Defined by the
following
formula: TP +
TN/N, where
TP = true
positives, TN =
true negatives,
and N = total
number of
samples.

International
Seed Testing
Association
(ISTA 2006)

Limit of
detection:
Lowest content
that can be
measured with
reasonable
statistical
certainty.

Cross reactivity:
Response (of
method) to
analogues,
metabolites, or
other nontarget
components
that may be
present in the
matrix(es).

Repeatability:
Closeness of
the agreement
between the
results of
successive
measurement of
the same
measure and
carried out in the
same conditions
of measurement
(IUPAC 2023).

Reproducibility:
Precision under
reproducibility
conditions (i.e.,
conditions
where test
results are
obtained with
the same
method on
identical test
items in
different
laboratories with
different
operators using
different
equipment).

Ruggedness test:
Intra-laboratory
study to study
the behavior of
an analytical
process when
small changes in
the
environmental
and/or operating
conditions are
made, akin to
those likely to
arise in different
test
environments.
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Approaches for the Detection and Identification
of Pathogen Nucleic Acids in a Sample

Methods based on nucleic acid detection can be categorized into
three major groups, which are sometimes interconnected. First, due
to their current importance, is nucleic acid amplification techniques
based on PCR or isothermal amplification of specific pathogen tar-
gets (Byzova et al. 2018; De Boer and López 2012). Second is a
group of methodologies based on nucleic acid hybridization, which,
although usually less sensitive than PCR techniques, yield excellent
results for mass sampling, especially in the case of diseases caused
by viruses (Melcher et al. 2014; Sánchez-Navarro et al. 2018). Third,
there are sequencing techniques that are used after pathogen isola-
tion for identification or, more recently, targeted massive sequencing
techniques aimed at detecting a pathogen, a group of pathogens, or
their presence within a plant’s microbiota (Piombo et al. 2021).

Pathogen detection by PCR has become routine in most plant
pathology diagnostic laboratories (Byzova et al. 2018; Hariharan
and Prasannath 2020). The technology has evolved from conven-
tional endpoint PCR, characterized by visualizing the PCR products
at the end of the reaction. It includes multiple variations aimed at
amplifying DNA or RNA or, for example, multitarget strategies
to amplify different DNA or RNA sequences in the same sample.
This is done for the simultaneous detection of multiple pathogens
or different sequences of the same pathogen, enabling more precise
detection and identification (Cesbron et al. 2020; Hariharan and
Prasannath 2020; Pallás et al. 2018). Visualization of PCR prod-
ucts generated from the sample is most often achieved through gel
electrophoresis of the PCR products, although there are other less
widespread alternatives (Hariharan and Prasannath 2020; Nakano
et al. 2017).

In recent years, conventional PCR has been replaced by real-
time qPCR, which generally has higher sensitivity and relies on
automated systems in which no further processing of PCR is re-
quired for visualization, with the consequent advantage of a lower
risk of laboratory contamination. Furthermore, qPCR enables the
quantification of pathogen concentrations in samples, offering accu-
rate quantification methods. More recently, other PCR-automatized
strategies with excellent sensitivity features have been developed
that, although not yet widely used in diagnosis, are promising.
One example is droplet digital PCR (ddPCR), where the sample
is divided into thousands of water-in-oil droplets, each potentially
holding zero or one copy of the template DNA/cDNA, which is then
amplified. ddPCR is also a PCR-automatized system with excel-
lent sensitivity and allows for the absolute quantification of nucleic
acids. ddPCR, similar to conventional PCR and unlike qPCR, is
an endpoint technique that does not require a standard curve for
quantification. ddPCR has already been applied for the detection
of various plant pathogens, including viruses, bacteria, fungi, or
oomycetes (Lu et al. 2020; Morcia et al. 2020; Santander et al. 2019;
Zhao et al. 2016). Today, PCR techniques, in one variant or another,
have become the gold standard in plant pathology diagnostics, as
has occurred in other fields, such as clinical diagnostics.

The other major group of amplification methods used in diagnosis
is based on isothermal amplification (Van Ness et al. 2003). These
methods are characterized by not involving different temperature
cycles in the reactions; thus, they do not require the use of thermal
cyclers. Moreover, it is often argued that they are more suitable
for field analyses. The most used technique among these isother-
mal methods is loop-mediated isothermal amplification (LAMP)
(Notomi et al. 2000). LAMP is a highly effective and specific am-
plification technique to detect pathogens, and it has been widely
applied in various biological fields due to its ease of use (Le and
Vu 2017). LAMP has the advantage of not requiring complex sam-
ple preparation, and results are obtained in a shorter time than with
other amplification methods and can be recorded in portable de-
vices, making it more convenient for in-field application (Bühlmann

et al. 2013; Gomez-Gutierrez and Goodwin 2022; Le and Vu 2017;
Palacio-Bielsa et al. 2015; Panno et al. 2020). Other isothermal
amplification methods include RPA, RCA, and NASBA. These
methods, such as LAMP, do not rely on thermal cycling or gel
electrophoresis to visualize the results, making them convenient
for in-situ applications, despite their limited market share (Ivanov
et al. 2021; Venbrux et al. 2023).

Regardless of the type, nearly all nucleic acid-based techniques
require prior extraction protocols. In the case of plant material,
this can be challenging due to the presence of inhibitors (Uchii
et al. 2019). Furthermore, the nucleic acid must maintain suffi-
cient integrity to be amplified, and sometimes meticulous care
is necessary to prevent its degradation. Occasionally, to verify
the quality of nucleic acid preparations, internal controls are in-
cluded in the reactions. An internal control may involve ampli-
fying sequences that are consistently present in the sample, such
as those from the host plant’s genome, or introducing synthetic
molecules directly into the sample to act as artificial positive con-
trols. The successful amplification of an internal control confirms
the quality of the extracted nucleic acids (EPPO 2021b; Mittelberger
et al. 2020).

Specificity of Nucleic Acid-Based Detection
and Diagnosis Approaches

All diagnostic techniques must meet appropriate sensitivity
and specificity requirements, among other needs, as stated above
(Table 1). The sensitivity of a detection method is a relatively
straightforward concept, as it corresponds to the minimum amount
of the pathogen that can yield a positive result using that method.
Specificity is defined as the ability of a method to detect a pathogen
in a sample when it is present and to not detect it when the sample is
uninfected. In other words, specificity measures the proportion of
true negative results out of all the individuals who are disease-free.
This implies the ability to differentiate the target pathogen from
other closely related taxa that may have similar genetic traits and
could be a component of the plant’s microbiota. Therefore, selecting
appropriate target DNA or RNA sequences in diagnostic strategies
is essential to differentiate the pathogen from other nonpathogenic
microorganisms present in the plant (Catara et al. 2021).

In a disease diagnosis protocol based on genomic-informed tar-
gets, it may be advisable to use sequences corresponding to genes
that are somehow related to the pathogen’s virulence. However,
genes that play a role in pathogenicity often undergo selection and
rapid evolution, which significantly increases the likelihood of false
negatives in the tests (Boureau et al. 2013). Moreover, other targets,
not associated or not yet linked with infectivity, can also distin-
guish between pathogens and non-pathogens, making them useful
for disease diagnosis (Catara et al. 2021). In any case, and regard-
less of the design of the amplification protocol, the selection of
the target sequence in the pathogen must be especially meticu-
lous and the result of an exhaustive analysis. Over the past few
years, many comparative genomics studies have been conducted
to identify unique amplification targets that differentiate pathogens
from non-pathogens and to design specific PCR protocols for dis-
ease diagnosis (Catara et al. 2021; Garita-Cambronero et al. 2016;
Larrea-Sarmiento et al. 2018; Yasuhara-Bell et al. 2023).

As mentioned earlier, another intriguing aspect of specificity
worth discussing is whether it is necessary to precisely detect the
pathogens only when they retain their virulence features and not
when they are epidemiologically irrelevant (i.e., living versus dead
organisms). Molecular techniques initially lacked this capability, as
they primarily rely on identifying nucleic acid fragments that may
exhibit high stability and remain in the environment for an extended
period, allowing them to be detectable. To address this issue, tech-
niques such as PCR or nucleic acid sequence-based amplification
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for amplifying messenger RNA, which have much lower stability
and a shorter half-life, have been proposed (Golmohammadi et al.
2012; Scuderi et al. 2010; Wong et al. 2020). However, these tech-
nologies have not yet yielded the desired results for routine use,
precisely due to the low stability and usually low concentration
of these molecules, which limit the sensitivity level of techniques
aimed at amplifying them.

A second group of strategies aimed at the exclusive amplifica-
tion of living microorganisms involves the use of DNA intercalat-
ing agents, such as ethidium monoazide or propidium monoazide
(PMA) (Hu et al. 2013; Nakano et al. 2017). These strategies in-
volve rendering the nucleic acids from damaged microorganisms
non-amplifiable by covalent binding with ethidium monoazide or
PMA upon photoactivation (Nocker et al. 2006; Nogva et al. 2003).
The approach relies on the integrity of a microorganism’s outer
membranes, assuming those that are degraded and allow the en-
try of ethidium monoazide, PMA, or its new improved version
PMAxx correspond to nonviable organisms (Fig. 1). The method-
ologies have been assayed in phytopathology primarily focusing on
plant-pathogenic bacteria, although there are some examples with
fungal pathogens and even nematodes (Christoforou et al. 2014;
Hu et al. 2013; Santander et al. 2019; Sert Çelik et al. 2020; Wang
and Turechek 2020). However, similar to RNA amplification tech-
niques, the so-called viability PCR based on intercalating agents
is not entirely flawless, as amplification suppression may not be
complete for all dead cells in the sample, occasionally leading to
false-positive results, particularly when the PCR target presents at
high concentrations (Nogva et al. 2003; Seinige et al. 2014; Wang
and Turechek 2020).

NGS Nucleic Acid Detection
In less than 25 years since the beginning of the “omics era” with

the first genome sequence of a free-living plant pathogen, the bac-
terium Xylella fastidiosa (Simpson et al. 2000), a revolution in NGS,
and its application in understanding the molecular basis of pathogen

and host biology has occurred. This revolution has been driven by
studies on comparative genome or transcriptomic analysis (Adams
et al. 2021; Liu et al. 2023).

Many studies conducted to date have provided a plethora of
genomic data, primarily used to identify specific targets to de-
ploy detection protocols, most of which are based on nucleic acid
amplification as mentioned above (Ben Khedher et al. 2022).

Similar to other nucleic acid-based techniques for plant pathogen
detection, for NGS, it is necessary to fine-tune all the steps concern-
ing sample collection, nucleic acid purification, and the inclusion
of positive, negative, and process controls. It should also undergo
validation following established procedures and conditions used
when proposing any new detection protocol. Fortunately, the scien-
tific community has started to set the minimum required parameters
to obtain high-quality and reproducible NGS detection protocols.
As these aspects are out of the scope of this article, the interested
reader can access this material from other sources (EPPO 2022c;
Lebas et al. 2022; Massart et al. 2022).

Shotgun or amplicon-based metagenomics, the principles and
characteristics of which have been recently reviewed (Piombo et al.
2021), can potentially be used to perform the sequencing, detection,
and, to some extent, relative quantification of all the microorgan-
isms present in a biological sample simultaneously. This capability
opens the possibility of using it as a prescreening tool, provid-
ing a snapshot of the whole system, studying not only a specific
host−pathogen interaction but also all the other organisms asso-
ciated with the pathosystem under study and population changes
caused by external forces. The information could be fundamen-
tal for developing broad-spectrum protocols to boost the screening
tools for phytosanitary surveillance, similar to the approach be-
ing deployed for microbial surveillance in regard to human health
(Dubois et al. 2022).

Metabarcoding, as an amplicon-based approach, is currently the
more widely accessible approach to apply NGS to diagnose and
surveil plant-pathogenic prokaryotes, fungi, and oomycetes. De-
spite its low technical complexity, a main drawback of metabarcod-
ing is selecting the genomic target for taxonomic discrimination.

FIGURE 1
Schematic representation of a viability PCR assay for a population of live and dead bacteria. Intercalating agents propidium monoazide (PMA) and
ethidium monoazide (EMA) covalently bind to free DNA or DNA from damaged cells. After extraction, free DNA or DNA from damaged cells are not
amplified by PCR.
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Partial 16S rDNA amplicons have been widely used in prokaryotes
despite their low discriminative power at species or intraspecific
levels and the possibility of amplifying genetic material from plant
organelles (Giangacomo et al. 2021; Muhamad Rizal et al. 2020).
Recent research in this field has highlighted the importance of ex-
ploring new genomic targets, such as other single-copy housekeep-
ing genes, for example, the gene for the B subunit of the DNA gyrase
(Barret et al. 2015). This gene outperformed 16S rDNA in discrim-
inating the amplicons obtained up to a species or subspecies level
with a low amount of host amplicon contamination (Newberry et al.
2023). Taxonomic assignment improvement is also needed for typ-
ing eukaryotic plant pathogens, such as oomycetes and fungi, where
18S rDNAs and partial regions of the internal transcribed spacer are
the most used targets for metabarcoding. The primers used in the
PCR amplification step can bias the results and should not be used
to infer the absence of any particular species if used as a screening
tool. However, these targets seem to be helpful when primers are
adapted to study the diversity or presence of a particular genus (Chen
et al. 2022; Makiola et al. 2019; Reich et al. 2023; Rossmann et al.
2021). To address this limitation, the use of a full-length internal
transcribed spacer region or the addition of another target gene, such
as the translation elongation factor 1-alpha, are strategies proposed
mainly for gaining taxonomic accuracy and discrimination power,
which is feasible by applying long-read third-generation sequencers
such as PacBio and Oxford Nanopore platforms (Jacky et al. 2021).

When exploring and utilizing new sets of barcoding genes, it is
essential to have curated and high-quality reference databases for
the selected genomic targets. Thanks to the current availability of
open databases with massive general data and the development of
bioinformatic pipelines devoted to creating reference taxonomical
databases, this multitarget approach could become more implanted
into the identification and surveillance of plant pathogens (Dubois
et al. 2022; Makiola et al. 2019). Another factor to consider when
using metabarcoding is its dependence on a pre-amplification step
of the target by PCR, which, in this case, can be seen as a double-
edged sword. On one side, the approach renders metabarcoding
a highly sensitive detection tool, but on the other side, it runs a
significant likelihood of introducing external contamination, which
could be amplified with each PCR cycle, potentially yielding false
or low-quality data. Proper handling of materials during sampling
and nucleic acid extraction, along with the use of environmental
controls taken at the sampling site and in the laboratory, assists in
discriminating the actual set of organisms present in the analyzed
sample (Jacky et al. 2021).

Whole-genome metagenomic sequencing is another approach
to determine the presence of all the DNA associated with plant-
pathogenic organisms, including those that are unknown or not
culturable, and it does not require previous genetic knowledge of
the pathogen causing the disease. In contrast to metabarcoding,
shotgun metagenomics avoids PCR-associated biases and obtains
information from longer DNA regions, which provide more reli-
able taxonomic assignments. However, it also provides much more
genomic information about the pathogenic and other metabolic
characteristics of the organisms in the sample (Venbrux et al.
2023). Nevertheless, shotgun metagenomics is less accessible for
general diagnostics and plant disease surveillance due to the as-
sociated drawbacks of specialized sample processing, sequencing
depth, computational resources, and the need for more specialized
bioinformatic knowledge, as discussed below (Piombo et al. 2021).
Despite not being widely used, a few examples demonstrate the
feasibility of the technique for detecting plant-pathogenic fungi,
oomycetes, and bacteria (Venbrux et al. 2023). Shotgun metage-
nomics has been more widely used for detecting viral pathogens,
enabling early and accurate nontarget detection, which is helpful
in phytosanitary surveillance and certification programs for prop-
agating disease-free materials, as well as for surveillance frame-
works using other types of samples, for example, sewage water

(Duarte et al. 2023; Roux et al. 2021; van de Vossenberg et al.
2020).

Current portable real-time third-generation sequencers, such as
those using Oxford Nanopore technology, are making whole shot-
gun metagenomics increasingly accessible, affordable, and less
time-consuming. This allows for viral RNA/DNA sequencing in
as little as 1 h and the completion of the entire metagenomics
analyses pipeline in up to 24 h (Sun et al. 2022). Despite being
successfully applied in several pathosystems related to fruit trees
and herbaceous and ornamental plants (Lee et al. 2022; Sun et al.
2022), Oxford Nanopore technology still has a series of obstacles
that preclude its broader application in plant pathogen surveillance.
The obstacles include the lower read accuracy when compared
with other sequencing platforms, especially second-generation se-
quencers, and the lack of a user-friendly bioinformatics platform.
Current bioinformatic tools for the platform often underperform
in terms of accuracy and require users with proficiency in cod-
ing and command of a Linux-based environment. Addressing these
technical limitations will likely have a significant impact on future
detection, identification, and characterization of pathogens threat-
ening agriculture, similar to its application in clinical and public
health (Gauthier et al. 2023).

Current advancements in data analyses, machine learning algo-
rithms, and artificial intelligence may, in the near future, integrate
knowledge generated by multiple scientific disciplines and deploy
dynamic models for disease surveillance and outbreak predictions to
give a rapid response at a landscape scale. In this context, historical
and current NGS data archives can be used in bioinformatic predict-
ing tools to identify novel strains of pathogen lineages, understand
their evolution, and track their movement in real time. These ca-
pabilities can allow for more accurate fine-tuning of current model
parametrization and better constraint of the chains of transmission.
Initiatives in this direction are already in progress, exemplified by
Nextstrain, which has been used to understand the epidemiology and
improve management responses to detection of pathogens such as
tomato brown rugose fruit virus based on the pathogen evolutionary
information obtained from NGS projects (van de Vossenberg et al.
2020).

One aspect to discuss regarding detection methodologies based
on the comprehensive analysis of the plant microbiota is the com-
pelling need to identify whether any of its components are genuinely
harmful to the plant (i.e., pathogens), simply resident microflora that
exert no detrimental effects (Mannaa and Seo 2021), or even phy-
tobiome communities involved in beneficial interactions with the
plant that improve the health and growth of the host, conferring
tolerance to biotic and abiotic stresses (Ali et al. 2023a, b). Is it
essential for diagnosis to determine all the viruses, bacteria, fungi,
oomycetes, or viroids in a sample? Further studies are needed to
deepen our understanding of the plant microbiota and its impact on
plant health. Metagenomic analyses can contribute to addressing
this by identifying genes in the samples involved in the infective
processes of microorganisms. Although NGS technologies are al-
ready being implemented in diagnostic laboratories, it is crucial
for regulatory organisms to have a clear understanding of those
microbiota components that, either individually or in combination
with others, are capable of causing a disease or syndrome. This
understanding helps prevent unnecessary measures based on detect-
ing a microorganism whose potential harmful effects are unknown,
similar to what was discussed earlier regarding nonviable microor-
ganisms that do not pose any epidemiological risk (Mannaa and Seo
2021; Trivedi et al. 2020).

Spectral-Based Detection
of Pathogen-Induced Symptoms

Visual monitoring is a widely used method for plant disease de-
tection. When integrated into a prognosis system alongside regional
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weather and other epidemiological parameters, it may become a
valuable tool for predicting the spread of diseases in specific geo-
graphic areas (Ul Haq and Ijaz 2020). Methods for visual monitor-
ing are now based on a firmer scientific understanding and can be
applied in a more informed and nuanced manner to ensure appropri-
ate methodology to maximize accuracy and reliability (Bock et al.
2022). The development and use of ordinal disease scales and stan-
dard diagrams are well-established examples (Chiang et al. 2014;
Del Ponte et al. 2017).

However, visual inspection is typically an expensive, laborious,
and time-consuming methodology (Habib et al. 2022). Furthermore,
as mentioned earlier, disease diagnosis based on the host plant’s
symptoms is not always accurate. Numerous diseases have symp-
toms similar to physiological abnormalities induced by external
factors, and some infections can remain asymptomatic or exhibit
only mild, weakly identifiable symptoms in the initial stages of
development (Habib et al. 2022). Moreover, visual detection fre-
quently results in disease detection occurring when the optimal
window for implementing effective control measures has already
passed (Steiner et al. 2008). Diseases, as well as abiotic stress,
often exhibit temporal and spatial heterogeneity within a cropped
field. Differences in the physical environment, including factors
such as soil conditions and microclimate, can interact with crop
development and the life cycles of pathogens, resulting in hetero-
geneity of disease incidence and severity across the field (Oerke
2020). As a result, assessing site-specific disease management on a
large scale requires a detailed recording of spatial distribution and
disease progression. This, in turn, requires extensive georeferenced
monitoring of crop diseases to ensure precise timing and applica-
tion of control measures (Nutter et al. 2011). Consequently, there
is a need for accurate and time-efficient methods for disease mon-
itoring, encompassing detection, identification, and quantification
(Oerke 2020).

Detection of Pathogen-Induced Symptoms
with Imaging Spectroscopy and Spectral Analysis

Pathogens that colonize and parasitize plants induce changes in
the metabolism and alter the biochemical and physical status of
plant tissues, resulting in visible disease symptoms (Oerke 2020).
These visible symptoms become apparent after a pathogen-specific
latency period that is influenced by environmental factors, with du-
rations ranging from days to months. The observable effects provide
a physical foundation for their remote monitoring using sensing
techniques (Zhang et al. 2019).

Symptoms on susceptible crops can include (i) lesions and
necrotic tissues, which may vary in color and shape depending on
the specific host and pathogen involved, and they can occur in lo-
calized areas or be uniformly distributed throughout the canopy
(Cao et al. 2013; Moshou et al. 2004); (ii) degradation of pigment
systems (pathogen infection can commonly lead to the deteriora-
tion of chloroplasts and other organelles, resulting in alterations
in pigment content, including chlorophyll, carotenoids, and antho-
cyanins) (Grisham et al. 2010; Zhang et al. 2012); and (iii) wilting,
which results from the loss of plant rigidity due to dehydration.
With some diseases, particularly those affecting the roots or vascu-
lar system, water flow may be restricted within the plants, leading
to dehydration throughout the entire plant (Calderón et al. 2013).

Most imaging spectroscopy studies have focused primarily on
foliar pathogens in annual crops, where disease symptoms are char-
acterized mainly by the first two types of symptoms (i.e., necrotic
tissues or distinct color changes in the aboveground parts of the
plant). However, imaging spectroscopy is still poorly developed
for the detection of diseases caused by soilborne plant pathogens,
mainly fungi, oomycetes, and nematodes, which parasitize plant
roots, disrupting the xylem vessels and reducing nutrient and water

uptake with a reduction in leaf transpiration rate, which leads to a
decline characterized by leaf chlorosis and defoliation (Hillnhütter
et al. 2010). The symptoms often become visible in the later stages
of the disease (Oerke 2020).

Spectral Imaging Methods and Indicators
of Biotic-Induced Stress

Remote sensing techniques based on spectral analyses have
successfully detected biotic-induced symptoms of disease even at
the early (pre-visual) stages of infection (Zarco-Tejada et al. 2018,
2021). Imaging spectroscopy and thermal imaging measure the
reflected and emitted radiation by plants across the electromagnetic
spectrum in several narrow spectral bands, particularly in the visible
(400 to 700 nm), near-infrared (700 to 1,300 nm), shortwave infrared
(1,300 to 2,500 nm), and thermal infrared (8 to 14 μm) spectral re-
gions. It can also detect the emission of solar-induced fluorescence
in the 650- to 800-nm spectral region, a signal widely considered a
proxy for plant photosynthesis (Mohammed et al. 2019). Spectral
indicators obtained by these remote sensing techniques, in the
form of vegetation indices, spectral-based plant traits, fluorescence
emission, and canopy temperature, are proposed for the detection of
subtle physiological changes occurring in vegetation at both early
and advanced stages of pathogen infection (Hernández-Clemente
et al. 2019). Recent studies have demonstrated that hyperspectral
and thermal imagery obtained by aerial platforms can detect
physiological changes and symptoms associated with diseases,
such as holm oak (Quercus ilex) decline induced by Phytophthora
cinnamomi (Hornero et al. 2021); physiological alterations in olive
(Olea europaea) caused by Xylella fastidiosa infection (Zarco-
Tejada et al. 2018); wilt of olive caused by Verticillium dahliae
(Calderón et al. 2013); Aphanomyces root rot in lentil (Lens
culinaris) caused by Aphanomyces euteiches (Marzougui et al.
2019); Rhizoctonia crown and root rot of sugar beet (Beta vulgaris)
induced by Rhizoctonia solani (Reynolds et al. 2012); Cercospora
leaf spot of sugar beet caused by Cercospora beticola, Erysiphe
betae, and Uromyces betae (Mahlein et al. 2010); late blight and
early blight in potato (Solanum tuberosum) caused by Phytophthora
infestans and Alternaria solani, respectively (Gold et al. 2020);
South American leaf blight in rubber trees (Hevea brasiliensis)
caused by Pseudocercospora ulei (Sterling and Di Rienzo 2022);
and yellow rust in wheat (Triticum aestivum) caused by Puccinia
striiformis f. sp. tritici (Devadas et al. 2009; Ren et al. 2021),
among others.

The detection of biotic-induced symptoms using imaging spec-
troscopy, based on the sensitivity of band ratios and normalized
indices, relies on their sensitivity to photosynthetic and non-
photosynthetic plant pigments such as chlorophyll a+b, carotenoids,
anthocyanins, and xanthophylls, as well as changes occurring to
specific spectral bands due to structural changes in the leaf and
canopy at advanced stages of the disease progression. These plant
pigments absorb radiation in the 400- to 700-nm spectral region.
Thus, reflectance indicators calculated in this region are sensitive
to changes in the photosynthetic dynamics of infected vegetation.
The near-infrared and shortwave infrared regions have also been
demonstrated sensitive for disease monitoring because this region
tracks the absorption due to plant water, dry matter, and nutri-
ents that are affected under biotic stress (Camino et al. 2022). The
fundamental basis underlying the spectral detection of symptoms in-
duced by pathogen infection is based on the photoprotective role of
xanthophylls, protection from damage by anthocyanins (Lev-Yadun
and Gould 2008), and damage of the photosynthetic apparatus un-
der infection. These molecules accumulate in infected vegetation
and are produced during the degradation of chlorophyll into phaeo-
phytin (Barnes et al. 1992; De La Fuente et al. 2013; Peñuelas
et al. 1995). Overall, changes in the photosynthesis and stomatal
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regulation (Zeng et al. 2010) caused by plant−pathogen interac-
tions (Berger et al. 2007) lead to reductions in fluorescence emission
(Calderón et al. 2013; Tung et al. 2013) and transpiration rates
(Chaerle et al. 2004), producing phenolic plant defense compounds
(Barón et al. 2016).

Several ratios and normalized indices derived from spectral data
have been proposed since the late 1970s. The indices are calculated
from spectral reflectance data measured by non-imaging and imag-
ing spectrometers covering the visible, near-infrared, and shortwave
infrared spectral regions. The indices are calculated after the data
are calibrated and converted into spectral reflectance to be com-
parable across dates and changing laboratory or ambient light and
atmospheric conditions. This physical quantity represents, for each
wavelength, the reflected radiation measured from the leaf or the
vegetation canopy under study. The normalized difference vegeta-
tion index has been widely used for vegetation monitoring (Rouse
et al. 1974) because it is sensitive to vegetation growth and canopy
density. The photochemical reflectance index (PRI) (Gamon et al.
1992) has been used for tracking the dynamics of the xanthophyll
pigments pool, thus being proposed for the detection of biotic-
induced symptoms due to the sensitivity to the light-use efficiency
and photosynthetic performance (Calderón et al. 2013). Several PRI
variants, such as the normalized PRI (Zarco-Tejada et al. 2013a) and
other modified PRIs, have been proposed to track both biotic and
abiotic stresses (Camino et al. 2021; Hernández-Clemente et al.
2011; Poblete et al. 2020). Other indices sensitive to plant pigments
have proven useful for disease monitoring, such as the normalized
phaeophytinization index (Barnes et al. 1992; Peñuelas et al. 1995).
Additionally, there are indices sensitive to chlorophyll a+b, such
as the Vogelmann index (Vogelmann 1993) and the transformed
chlorophyll absorption ratio index (Haboudane et al. 2002), which
are normalized by the soil adjusted vegetation index (Rondeaux
et al. 1996). Other water-sensitive indices, such as the water index
(Peñuelas et al. 1993) and the normalized difference water index
(Gao 1996), have been used to monitor symptoms caused by fire
blight in apple (Malus domestica) induced by Erwinia amylovora
(Skoneczny et al. 2020), Southern corn (Zea mays) rust caused by
Puccinia polysora (Meng et al. 2020), and Fusarium head blight
caused by Fusarium on wheat (Huang et al. 2021). Other specific
indices, such as the healthy index, were developed to monitor sugar
beet diseases by multiple iterations and selection of spectral re-
flectance bands (Mahlein et al. 2013). A list of the most widely
used vegetation indices proposed for vegetation stress detection is
presented in Table 2.

Although vegetation indices and spectral transforms are sensi-
tive to physiological changes in infected plants and can be used
to detect disease incidence and severity, they still have limitations.
Spectral indices are affected by multiple factors, including the soil
background, sun angle effects, and vegetation shadows, as well as
by multiple biochemical constituents absorbing radiation in over-
lapping spectral regions. The inversion of radiative transfer models
enables the simultaneous retrieval of the leaf biochemistry and the
canopy structural traits (Jacquemoud 1993; Jacquemoud et al. 1996,
2009; Ustin et al. 2009). Unlike single ratios and normalized in-
dices, which are simultaneously sensitive to several traits, the plant
traits estimated by the inversion of radiative transfer models re-
veal a more comprehensive status of the physiology of vegetation
undergoing pathogen infection (Zarco-Tejada et al. 2018). In ad-
dition, quantifying traits by physically based simulations improves
transferability to other pathosystems and geographic locations be-
cause the retrieval methods are not empirically based. One of the
most widely used radiative transfer models is PRO4SAIL, a linked
leaf model PROSPECT (Féret et al. 2017; Jacquemoud and Baret
1990) with a canopy simulation model SAIL/4SAIL (Verhoef 1984;
Verhoef et al. 2007). This linked leaf-canopy simulation approach
has been successfully used to estimate leaf biochemical constituents
and canopy structural parameters from vegetation, which are then

used as inputs in machine-learning models for disease incidence
and severity detection (Poblete et al. 2021, 2023; Zarco-Tejada
et al. 2018). Recent significant progress was achieved by devel-
oping a modeling framework to quantify the overall status of the
physiological condition of infected vegetation. The approach fo-
cused on the quantification of (i) a pool of narrow-band spectral
traits, (ii) solar-induced fluorescence and fluorescence efficiency,
(iii) spectral-based leaf and canopy traits, and (iv) transpiration
indicators of water stress (Zarco-Tejada et al. 2018). This multi-
layered functional plant-trait scheme has been successfully applied
to the vascular pathogens X. fastidiosa (Zarco-Tejada et al. 2018,
2021) and V. dahliae (Poblete et al. 2021, 2023) using airborne
imaging spectroscopy data collected from infected crops in Europe.
These indicators were inputs for a multi-step modeling approach
to detect disease-induced symptoms (Poblete et al. 2023), linking
mechanistic and machine-learning algorithms.

Machine-Learning Models for Disease Incidence
and Severity Assessment

Machine-learning algorithms for disease incidence and sever-
ity assessment are proposed with inputs such as spectral-based
indices, leaf biochemical and canopy structural parameters esti-
mated by model inversion techniques, solar-induced fluorescence,
and canopy temperature (Poblete et al. 2023; Zarco-Tejada et al.
2018). To enhance the detection of infected vegetation, modeling
schemes based on multistage classification methods have been im-
plemented, enabling quantification of the trait’s contribution to the
overall model performance (Poblete et al. 2021).

The traditional approach for detecting infected vegetation has
been based on empirical methods such as regression analysis, which
typically involves a single input. For example, the PRI alone could
detect yellow rust in winter wheat (Huang et al. 2007). In another
study, a single thermal indicator between canopy temperature de-
pression and partial least squares regression was used to detect
Dothistroma needle blight in Scots pine (Smigaj et al. 2019). The
detection was most accurate when the thermal imagery was ob-
tained during periods of the greatest solar radiation and maximum
photosynthetic activity. Studies by Huang et al. (2007) and Zhang
et al. (2012) demonstrated that the physiological reflectance index
was the only index sensitive to the detection of yellow rust, whereas
other indices, such as the PRI, the normalized pigment chlorophyll
ratio index, and the anthocyanin reflectance index, despite being
sensitive to the detection of infection, were also sensitive to abi-
otic stresses such as water stress, leading to errors in the detection
of biotic-induced symptoms. These confounding effects highlight
the crucial aspect of distinguishing among symptoms caused by
various pathogens. Gold et al. (2020) used hyperspectral data and
partial least squares discriminant analysis to distinguish between
fungal infections in potatoes due to Phytophthora infestans and
Alternaria solani, two pathogens that cause similar necrotic leaf
symptoms. Partial least squares discriminant analysis was also used
to discriminate between oak wilt, caused by the fungus Bretziella
fagacearum, and bur oak blight, caused by the fungus Tubakia
iowensis (Fallon et al. 2020). Both pathogens produce similar symp-
toms that can be mistaken for oak wilt. To overcome the limitations
of empirical approaches based on single indicators of infection,
machine-learning algorithms coupled with radiative transfer mod-
els have made progress in understanding the intrinsic and complex
relationships between physiology and remote sensing-derived plant
traits to discriminate between infections. In a study conducted by
Poblete et al. (2021), a multistage classification algorithm enabled
the differentiation between two vascular pathogens, X. fastidiosa
and V. dahliae. The results revealed that it was possible to distinguish
between the two sources of infection through a multistage machine-
learning classification algorithm. Specifically, the key spectral traits
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TABLE 2
Indices derived from hyperspectral and thermal data related to plant physiological condition

Hyperspectral indices Equation Reference(s)

Structural indices

Normalized difference vegetation index NDV I = (R800 − R670)/(R800 + R670) Rouse et al. 1974

Renormalized difference vegetation index RDV I = (R800 − R670)/
√

(R800 + R670) Roujean and Breon 1995

Optimized soil-adjusted vegetation index OSAV I = ((1 + 0.16) · (R800 − R670)/(R800 + R670 + 0.16)) Rondeaux et al. 1996

Modified soil-adjusted vegetation index MSAV I =
2 · R800 + 1 −

√
(2 · R800 + 1)2 − 8(R800 − R670)

2
Qi et al. 1994

Triangular vegetation index TV I = 0.5 · [120 · (R750 − R550) − 200 · (R670 − R550)] Broge and Leblanc 2001

Modified triangular vegetation index 1 MTV I1 = 1.2[1.2(R800 − R550) − 2.5(R670 − R550)] Haboudane et al. 2004

Modified triangular vegetation index 2 MTV I2 = 1.5[1.2(R800 − R550) − 2.5(R670 − R550)]√
(2R800 + 1)2 − (6R800 − 5

√
R670) − 0.5

Haboudane et al. 2004

Modified chlorophyll absorption index MCARI = [(R700 − R670) − 0.2(R700 − R550)] · (R700/R670) Haboudane et al. 2004

Modified chlorophyll absorption index 1 MCARI1 = 1.2[2.5(R800 − R670) − 1.3(R800 − R550)] Haboudane et al. 2004

Modified chlorophyll absorption index 2 MCARI2 = 1.5[2.5(R800 − R670) − 1.3(R800 − R550)]√
(2R800 + 1)2 − (6R800 − 5

√
R670) − 0.5

Haboudane et al. 2004

Simple ratio SR = R800/R670 Jordan 1969

Modified simple ratio MSR = R800/R670 − 1

(R800/R670)0.5 + 1
Chen 1996

Enhanced vegetation index EV I = 2.5 · (R800 − R670)/(R800 + 6 · R670 − 7.5 · R800 + 1) Liu and Huete 1995

Pigment indices

Vogelmann indices V OG1 = R740/R720 Vogelmann 1993

V OG2 = (R734 − R747)/(R715 + R726) Vogelmann 1993

V OG3 = (R734 − R747)/(R715 + R720) Vogelmann 1993

Gitelson and Merzlyak indices GM1 = R750/R550 Gitelson and Merzlyak 1996

GM2 = R750/R700 Gitelson and Merzlyak 1996

Transformed chlorophyll absorption in
reflectance index

TCARI = 3 · [(R700 − R670) − 0.2 · (R700 − R550) · (R700/R670)] Haboudane et al. 2002

Transformed chlorophyll absorption in
reflectance index/optimized soil-adjusted
vegetation index

TCARI
OSAV I

= 3 · [(R700 − R670) − 0.2 · (R700 − R550) · (R700/R670)]
((1 + 0.16) · (R800 − R670)/(R800 + R670 + 0.16))

Haboudane et al. 2002

Chlorophyll index red edge CI = R750/R710 Haboudane et al. 2002

Simple ratio pigment index SRPI = R430/R680 Barnes et al. 1992; Peñuelas
et al. 1995

Normalized phaeophytinization index NPQI = (R415 − R435)/(R415 + R435) Barnes et al. 1992; Peñuelas
et al. 1995

Normalized pigments index NPCI = (R680 − R430)/(R680 + R430) Peñuelas et al. 1995

Carter indices CT RI1 = R695/R420 Carter 1994

CAR = R695/R760 Carter et al. 1996

Reflectance band ratio indices DCabCxc = R672/(R550 · 3R708) Datt 1998

DNIRCabCxc = R860/(R550 · R708) Datt 1998

Structure-intensive pigment index SIPI = (R800 − R445)/(R800 + R680) Peñuelas et al. 1995

Carotenoid reflectance indices CRI550 = (1/R510) − (1/R550) Gitelson et al. 2003, 2006

CRI700 = (1/R510) − (1/R700) Gitelson et al. 2003, 2006

CRI550_515 = (1/R515) − (1/R550) Gitelson et al. 2006

CRI700_515 = (1/R515) − (1/R700) Gitelson et al. 2006

RNIR · CRI550 = (1/R510) − (1/R550) · R770 Gitelson et al. 2003, 2006

RNIR · CRI700 = (1/R510) − (1/R700) · R770 Gitelson et al. 2003, 2006

(Continued on next page)
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required to differentiate V. dahliae-infected trees from those affected
by X. fastidiosa included the blue region, the structural parameter
leaf inclination distribution function, and the carotenoid pigment
content Cx+c. Conversely, to discriminate between V. dahliae and

X. fastidiosa infections, the normalized PRI, the blue index BF1,
the fluorescence curvature index CUR, and the chlorophyll index
CRI700M were identified as essential factors for effectively distin-
guishing between these infections. The potential of using spectral

TABLE 2
(Continued from previous page)

Hyperspectral indices Equation Reference(s)

Plant senescencing reflectance index PSRI = (R680 − R500)/R750 Merzlyak et al. 1999

Pigment specific simple ratio chlorophyll a PSSRa = R800/R675 Blackburn 1998

Pigment specific simple ratio chlorophyll b PSSRb = R800/R650 Blackburn 1998

Pigment specific simple ratio carotenoid PSRRc = R800/R500 Blackburn 1998

Pigment specific normalized difference PSNDc = (R800 − R470)/(R800 + R470) Blackburn 1998

Xanthophyll indices

Photochemical reflectance index (570) PRI570 = (R570 − R531)/(R570 + R531) Gamon et al. 1992

Photochemical reflectance index (515) PRI515 = (R515 − R531)/(R515 + R531) Hernández-Clemente et al.
2011

Photochemical reflectance index (512) PRIm1 = (R512 − R531)/(R512 + R531) Hernández-Clemente et al.
2011

Photochemical reflectance index (600) PRIm2 = (R600 − R531)/(R600 + R531) Gamon et al. 1992

Photochemical reflectance index (670) PRIm3 = (R670 − R531)/(R670 + R531) Gamon et al. 1992

Photochemical reflectance index (670 and 570) PRIm4 = (R570 − R531 − R670)/(R570 + R531 + R670) Hernández-Clemente et al.
2011

Normalized photochemical reflectance index PRIn = PRI570/[RDV I · (R700/R670)] Zarco-Tejada et al. 2013a, b

Carotenoid/chlorophyll ratio index PRI · CI = (R570 − R530)/(R570 + R530) · ((R760/R700) − 1) Garrity et al. 2011

R/G/B indices

Redness index R = R700/R670 Gitelson et al. 2000

Greenness index G = R570/R670 Calderón et al. 2013

Blue index B = R450/R490 Calderón et al. 2013

Blue/green indices BGI1 = R400/R550 Zarco-Tejada et al. 2005

BGI2 = R450/R550 Zarco-Tejada et al. 2005

Blue/red indices BRI1 = R400/R690 Zarco-Tejada et al. 2012

BRI2 = R450/R690 Zarco-Tejada et al. 2012

BF1 BF1 = R400/R410 Zarco-Tejada et al. 2018

BF2 BF2 = R400/R420 Zarco-Tejada et al. 2018

BF3 BF3 = R400/R430 Zarco-Tejada et al. 2018

BF4 BF4 = R400/R440 Zarco-Tejada et al. 2018

BF5 BF5 = R400/R450 Zarco-Tejada et al. 2018

Red/green indices RGI = R690/R550 Zarco-Tejada et al. 2005

Ratio analysis of reflectance spectra RARS = R746/R513 Chappelle et al. 1992

Lichtenthaler index LIC1 = (R800 − R680)/(R800 + R680) Lichtenthaler 1996

LIC2 = R440/R690 Lichtenthaler 1996

LIC3 = R440/R740 Lichtenthaler 1996

Chlorophyll fluorescence

Reflectance curvature index CUR = (R675 · R690)/R2
683 Plascyk 1975; Zarco-Tejada

et al. 2000

Fraunhofer line depth (FLD) principle F LD = Eout · Lin − Ein · Lout

Eout − Ein
Mohammed et al. 2019

Plant disease index

Healthy index HI = (R534 − R698)
R534 + R698

− 1
2

· R704 Mahlein et al. 2012

Thermal index

Crop water stress index (CWSI) CW SI = (Tc − Ta ) − (Tc − Ta )LL

(Tc − Ta )UL − (Tc − Ta )LL
LL, UL = lower and upper limits, respectively

Idso et al. 1981
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features and plant traits to monitor pre-visual symptoms of disease
infection has been explored for other pathogens; promising results
were obtained in the pre-visual detection of rice leaf blast infec-
tion (Tian et al. 2021). The authors demonstrated the feasibility of
identifying infections at their early stages by combining two to four
spectral features.

Based on a multistage classification process, machine-learning
models have been proposed to distinguish biotic and abiotic stres-
sors (water and nutrient stress versus symptoms of vascular dis-
eases) and multiple pathogens that trigger similar symptoms in
plants (e.g., V. dahliae versus X. fastidiosa). Differentiating among
types of stress is achieved by assessing the plant pigments’ dy-
namics quantified by imaging spectroscopy, such as chlorophyll
a+b, carotenoids, anthocyanins, and xanthophylls. Through screen-
ing analyses of spectral traits, these plant pigments show diver-
gent trends as a function of pathogen-induced stress versus water
or nutrient deficiency levels (Zarco-Tejada et al. 2021). Methods
consist, first, of a feature-weighted random forest algorithm (Liu
and Zhao 2017) to identify the plant traits that are most impor-
tant for distinguishing between different types of stress. This is
done by calculating the importance of each trait using the permu-
tation of the out-of-bag method (Thomas et al. 2021). The plant
traits used in this stage, such as non-collinear spectral indices, flu-
orescence, and thermal indicators, are assessed by the variance
inflation factor (James et al. 2013). Second, a reclassification is
performed to reduce uncertainty and disentangle abiotic-induced
stress symptoms through unsupervised spectral clustering (Liu and
Han 2014). A schematic representation of the multistage process
using airborne hyperspectral and thermal imagery is presented
(Fig. 2).

Although machine-learning models are accurate at detecting and
diagnosing plant diseases, achieving overall accuracies exceed-
ing 90%, these models are species- and pathogen-specific. Future
research is focused on developing global models to detect pathogen-
induced symptoms at early stages of infection and that distinguish
between biotic and abiotic stresses.

Final Considerations on the Advantages
and Disadvantages of Different Pathogen Detection

and Disease Diagnostic Strategies

All routine plant pathogen detection methodologies should be
capable of quickly and economically diagnosing a large number

of plant samples with appropriate quality characteristics. Recent
advances in biochemistry, molecular biology, and remote sensing
have notably enhanced detection and diagnosis, improving their
sensitivity, accuracy, and efficiency and even facilitating quick and
straightforward detection directly in the field. However, certain
methods can be labor-intensive or necessitate the use of complex
equipment and highly trained personnel, which may not be avail-
able under field conditions or regions with scarce resources (Trippa
et al. 2024). Beyond the characteristics emphasized throughout the
article, an essential aspect that pathogen detection and disease di-
agnostic techniques must address is the economic factor. It is vital
for these technologies to be not only accurate and reliable but also
cost-effective from a practical economic standpoint, considering
their impact on overall agricultural production costs. The financial
cost of a detection method is relatively variable and includes the
required materials, equipment and licensing, and labor costs. Each
diagnostic method presents notable strengths and weaknesses, in-
cluding those related to economic considerations. The pros and cons
of prevalent pathogen detection and disease diagnostic approaches
are summarized (Table 3) (Shoaib et al. 2023; Trippa et al. 2024;
Venbrux et al. 2023). Unfortunately, the most economical methods,
which, for example, require simpler protocols, are not usually the
most effective in diagnosing or detecting pathogens. This is the case
with isolation and culturing of fungi, oomycetes, or bacteria or with
some nucleic acid hybridization methodologies, which, although
simple and inexpensive, do not always meet speed and/or sensitiv-
ity requirements. It is evident that the cost of molecular biology
techniques has been evolving; initially high prices have tended to
decline as the methods become more common, with more vendors,
and with competition from emerging alternatives. Consequently,
sensitive PCR techniques and other amplification methods, includ-
ing LAMP, RPA, RCA, and NASBA, have become more accessible
and have low or moderate costs as the diversity of available strate-
gies grow and new technologies are introduced. In other cases, such
as with ddPCR, the cost of diagnostics is mainly determined by the
expense of the novel equipment required. However, as with the pre-
vious examples, it is expected that the cost of ddPCR will decrease
in the future. On the other hand, there are massive sequencing tech-
niques that provide large quantities of information but at a high cost,
not only due to the sequencing itself but also because of the need for
subsequent bioinformatic analysis, which requires experts and often
increases the cost. Similarly, remote sensing techniques can entail
the processing of the data obtained by experts. Moreover, the cost
associated with these techniques can significantly differ per hectare,

FIGURE 2
Graphical representation of the use of airborne hyperspectral and thermal imagery to detect infected trees using multistage machine-learning
approaches.
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TABLE 3
Comparison of various types of pathogen detection and disease diagnosis methods

(Shoaib et al. 2023; Trippa et al. 2024; Venbrux et al. 2023)

Methoda Specificity Sensitivity Advantages Disadvantages Costb

Cultivation based Moderate Moderate Ease of use
Quantification allowed
Biochemical and phenotypical

characterization
No high-tech equipment required
Discrimination between viable

and nonviable organisms

Time-consuming
Moderate throughput potential
No multiplex capacity
No in situ
False negatives

Low-moderate

Serological

ELISA Good Moderate Ease of use
High throughput
Quantification capacity

Low sensitivity
Moderate specificity
No multiplex capacity

Low-moderate

PCR

Conventional PCR Good Good Moderate difficulty
Rapid
Detection of uncultivable

pathogens

Moderate throughput
No multiplex capacity
No quantification capacity
Specialized staff and lab

infrastructure
Contamination risk (amplicon

processing)
No in situ

Low-moderate

Multiplex PCR Good Moderate Moderate difficulty
Rapid
Detection of uncultivable

pathogens
Multiplex capacity

Moderate throughput
No quantification capacity
Specialized staff and lab

infrastructure
Risk of contamination (amplicons

processing)

Low-moderate

Real-time qPCR Very good Very good Medium difficulty
Rapid
High throughput
Multiplex capacity
Quantification capacity
Detection of uncultivable

pathogens
No PCR products further

processing

Specialized staff and lab
infrastructure

No in situ

Moderate

ddPCR Very good Excellent Rapid
Good throughput
Multiplex capacity
Quantification capacity
Detection of uncultivable

pathogens
No PCR products further

processing

Medium difficulty
No in situ
Specialized staff and lab

infrastructure

High

Isothermal amplification

LAMP Very good Good Ease of use
Very rapid
Possible in situ

Moderate throughput
No multiplex capacity
No quantification capacity

Low

RPA Good Good Ease of use
Very rapid
Multiplex capacity
Quantification capacity
Possible in situ

Moderate throughput Moderate

RCA Good Good Ease of use
Extremely rapid
Good throughput
Multiplex capacity
Quantification capacity
Possible in situ

Low purity annular template makes
it difficult to control connection
efficiency

The template needs to be a single
chain ring structure

Moderate

(Continued on next page)

a ELISA, enzyme-linked immunosorbent assay; ddPCR, digital droplet PCR; LAMP, loop-mediated isothermal amplification; RPA, recombinase poly-
merase amplification; RCA, rolling-circle amplification; NASBA, nucleic acid sequence-based amplification; and NGS, next-generation sequencing.

b The cost of each method was categorized as low, moderate, or high to facilitate comparison among them.
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influenced by factors such as the quality of spectra produced and the
equipment needed for data collection or the use of aerial or ground
vehicles, including drones and aircraft, with costs directly linked to
the size of the area under survey. With any approach, the number of
samples or the area to be surveyed is a critical factor in determining
costs.

Concluding Remarks
The availability and advancement of new nucleic acid analysis

and remote sensing technologies in the context of precision agricul-

ture have resulted in significant strides in improving a fundamental
aspect of disease control: the detection of plant pathogens and
diagnosis of plant diseases. Both technologies have already demon-
strated their utility in several ways, ranging from the development
of detection protocols to their direct application in measuring dis-
ease progression. Although this improvement can be described as
remarkable in recent years, the work cannot be considered com-
plete; it is ongoing, with several challenges and considerations that
remain.

The first consideration is how to distinguish live, viable pathogens
from those that are not active or not alive and thus noninfectious.

TABLE 3
(Continued from previous page)

Methoda Specificity Sensitivity Advantages Disadvantages Costb

NASBA Very good Very good Rapid
High throughput
Multiplex capacity
Quantification capacity
Possible in situ
High selectivity to RNA

molecules, free from
background DNA interference

No additional cDNA processing
required

Medium difficulty
Reaction components are complex

and many enzymes required
Not suitable for all kind of

pathogens

Moderate

Hybridization Moderate Moderate Rapid
Ease of use
No high-tech equipment required
Possible in situ
Multiplex capacity

Moderate throughput potential
False negatives

Moderate

NGS

Metabarcoding
(microbiota)

Good Good Excellent throughput
Multiplex capacity
Relative quantification capacity
Detection of uncultivable

pathogens

Complex use
Specialized staff and lab

infrastructure or use external
services

Contamination risk due to need
PCR

High

Metagenomics
(microbiome)

Excellent Good Excellent throughput
Multiplex capacity
Detection of uncultivable

pathogens

Very complex use
Specialized staff and lab

infrastructure or use external
services

High

Spectral imaging
coupled with
machine learning

Low Low Identification of disease foci at
early stage (plants exhibiting
stress even before showing
visible disease symptoms)

Potential of performing real-time
detection by continuous
monitoring of the crops

The integration of drone
technology with advanced
machine learning-based
segmentation techniques holds
the potential to deliver precise,
high-throughput quantitative
assessments of plant disease
severity

Able to detect biotic and abiotic
stresses

Automatization reduces the
requirement for manual
intervention, thereby increasing
accuracy and precision

Possible false-negative and
false-positive results

Requires high computational
capacity for data analyses

Data interpretation to detect biotic
stress in the plant can be
complex and may require
development of specific
algorithms, usually involving
machine learning or neural
networks

Expensive, especially for
high-resolution hyperspectral
images

Requires large number of labeled
features and may not be suitable
for new disease symptoms not
previously identified

Additional research is needed to
increase the availability of
datasets for public use, to
improve the training of predictive
models and model validation for
performance analysis

Additional research is needed to
scrutinize the potential benefits
and disadvantages of these
techniques regarding estimation
of yield losses and resource use

High
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Detecting pathogens only when they pose an actual threat is crit-
ical to avoid unnecessary interventions, such as control measures
or treatments, which can have important economic and environ-
mental repercussions. Technologies should evolve to provide this
level of specificity, helping to refine disease management strate-
gies. Second, the comprehensive analysis of microbial populations
within plants requires analysis. Analyzing the entire spectrum of
plant-associated microorganisms, including both pathogenic and
nonpathogenic entities, can yield valuable insights into plant health
and factors driving disease development. To achieve this, data pro-
cessing methods need further refinement to distinguish between
different microorganisms, their roles within plant ecosystems, and
their interaction with the environment. This will contribute to devel-
oping a more holistic understanding of plant−microbe interactions.
Third, advancements in remote sensing protocols are crucial for
enhancing precision and clearly distinguishing between biotic and
abiotic plant health stressors. Greater accuracy will facilitate early
detection of diseases and their specific causes, enabling timely in-
terventions and control measures. Both molecular methods and
spectral imaging have their strengths and weaknesses. Molecular
methods offer a high degree of certainty, which spectral imaging
lacks, but they are limited by smaller sample size capabilities. Spec-
tral imaging, on the other hand, can cover large areas quickly, though
it still requires advancements to enhance precision and clearly dif-
ferentiate between biotic and abiotic plant health stressors. One
advantage of spectral imaging lies in its ability to capture the space-
time dynamics of diseases, aiding in the understanding of their
epidemiology and improving management. As technology advances
and offers greater capacity to discriminate between similar symp-
toms caused by biotic or abiotic factors, the application of spectral
image analysis will play an increasingly important role in assessing
the phytosanitary status of large areas encompassing numerous host
plants. Nevertheless, both techniques will continue to be used syner-
gistically, preventing disease spread and optimizing the application
of control measures. In the face of a growing global population and
the need for sustainable agriculture, it is imperative for plant pathol-
ogists to address these challenges to achieve more effective disease
control. Nucleic acid analysis and remote sensing technologies will
contribute to developing a more resilient and efficient agriculture
sector capable of addressing the food production-limiting issues that
the planet’s population faces. The ongoing collaboration among dif-
ferent disciplines of technology, plant pathology, and agriculture is
a promising path toward a more sustainable and food-secure future.
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