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This paper presents a methodology for water stress detection in crop canopies using a radiative transfer
modelling approach and the Photochemical Reflectance Index (PRI). Airborne imagery was acquired with a 6-
band multispectral camera yielding 15 cm spatial resolution and 10 nm FWHM over 3 crops comprising two
tree-structured orchards and a corn field. The methodology is based on the PRI as a water stress indicator,
and a radiative transfer modelling approach to simulate PRI baselines for non-stress conditions as a function
of leaf structure, chlorophyll concentration (Cab), and canopy leaf area index (LAI). The simulation work
demonstrates that canopy PRI is affected by structural parameters such as LAI, Cab, leaf structure, background
effects, viewing angle and sun position. The modelling work accounts for such leaf biochemical and canopy
structural inputs to simulate the PRI-based water stress thresholds for non-stress conditions. Water stress
levels are quantified by comparing the image-derived PRI and the simulated non-stress PRI (sPRI) obtained
through radiative transfer. PRI simulation was conducted using the coupled PROSPECT-SAILH models for the
corn field, and the PROSPECT leaf model coupled with FLIGHT 3D radiative transfer model for the olive and
peach orchards. Results obtained confirm that PRI is a pre-visual indicator of water stress, yielding good
relationships for the three crops studied with canopy temperature, an indicator of stomatal conductance
(r2=0.65 for olive, r2=0.8 for peach, and r2=0.72 for maize). PRI values of deficit irrigation treatments in olive
and peach were consistently higher than the modelled PRI for the study sites, yielding relationships with
water potential (r2=0.84) that enabled the identification of stressed crowns accounting for within-field LAI
and Cab variability. The methodology presented here for water stress detection is based on the visible part of
the spectrum, and therefore it has important implications for remote sensing applications in agriculture. This
method may be a better alternative to using the thermal region, which has limitations to acquire
operationally high spatial resolution thermal imagery.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The Photochemical Reflectance Index (PRI) was proposed by Gamon
et al. (1992) as an indicator of the de-epoxidation state of the
xanthophyll pigments related with photosynthetic processes. It is
based on a normalized difference of the 530 nm band where
xanthophyll pigment absorption occurs, and a reference band located
at 570 nm. As the xanthophyll pigments are related to light absorption
mechanisms, the PRI index has been extensively linked to light use
efficiency (LUE) at the leaf scale (Guo & Trotter, 2004; Nakaji et al.,
2006; Serrano & Peñuelas, 2005; Sims et al., 2006), at canopy scale
using field spectrometers (Nichol et al., 2000, 2002; Strachan et al.,
2002; Trotter et al., 2002) and using satellite imagery such as EO-1

Hyperion (Asner et al., 2005), MODIS (Drolet et al., 2005) and AVIRIS
(Fuentes et al., 2006). The estimation of LUE through the remote
sensing PRI index has shown a direct link to photosynthesis rate
assessment (Guo & Trotter, 2004; Nichol et al., 2000, 2006; Sims et al.,
2006). In addition, photosynthesis has also been related to PRI
through chlorophyll fluorescence and non-photochemical quenching
(Evain et al., 2004; Nichol et al., 2006).

The early detection of water stress is a key issue to avoid yield loss,
which can be affected even by short-term water deficits (Hsiao et al.,
1976). The pre-visual detection of water stress has been successfully
achieved with remote sensing data using thermal infrared radiation
since long ago (Cohen et al., 2005; Idso et al., 1978; 1981; Jackson et al.,
1977, 1981; Jackson & Pinter, 1981; Leinonen & Jones, 2004; Möller
et al., 2007; Sepulcre-Cantó et al., 2006, 2007; Wanjura et al., 2004),
andmore recently being suggested the visible spectral regionwith the
PRI index as an indicator of stress (Peguero-Pina et al., 2008; Suárez
et al., 2008; Thenot et al., 2002). Alternatively, thermal imagery
acquired over vegetation is sensitive to canopy transpiration because
temperature is raised due to the reduction in evaporative cooling
under stress conditions. Thermal remote sensing of water stress has
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been accomplished using spectrometers at ground level (Idso et al.,
1981; Jackson et al., 1977,1981), thermal sensors at image level (Cohen
et al., 2005; Leinonen & Jones, 2004; Sepulcre-Cantó et al., 2007) and
using satellite thermal information (Sepulcre-Cantó et al., in press).

It is well known that severe water deficits affect many physiolo-
gical processes and have a strong impact on yield (Hsiao et al., 1976).
However, even moderate water deficits, which are not easy to detect,
can also have important negative effects on yield (Hsiao & Bradford,
1983). It is important to be able to assess the level of stress through
some pertinent indicators. This is the case of the xanthophyll cycle
response to stress tracked by the PRI index, which is suggested as a
pre-visual indicator of water stress and is the aim of this study. PRI has
been used to assess pre-visual water stress in thework by Thenot et al.
(2002) and Winkel et al. (2002) at leaf level, at canopy level
(Dobrowsky et al., 2005; Evain et al., 2004; Peguero-Pina et al.,
2008; Sun et al., 2008) and using airborne imaging spectroscopy
(Suárez et al., 2008). Both indicators, canopy temperature and PRI, are
complementary; they provide physiological information related to
plant water status, transpiration and photosynthesis. High spatial
resolution imagery in the visible and near infrared region is relatively
easy to acquire with current airborne and satellite sensors, such as
AHS, Hymap, CASI, AVIRIS, and Hyperion, among others. On the
contrary, high-resolution thermal sensors are not common due to
technical limitations of microbolometer technology. Moreover, high
resolution thermal imagers onboard satellite platforms are restricted
due to technical limitations. Current thermal medium resolution
sensors on satellite platforms are limited to ASTER and LANDSAT

sensors, offering spatial resolutions limited to the 60–120m pixel-size
range. These current technical limitations for acquiring high-spatial
resolution thermal imagery emphasize the need for developing pre-
visual water stress indicators in the VIS/NIR region for agricultural and
precision farming methods. Technically, CMOS and CCD VIS/NIR
imaging sensors based on silicon detectors provide very high spatial
resolution with pixel sizes at the centimetre level and cost-effective
for precision agriculture imagers and future satellite platforms. Thus,
attention must be placed on VIS/NIR narrow-band indicators of pre-
visual stress, such as PRI, as well as chlorophyll fluorescence for stress-
detection methods (Dobrowsky et al., 2005; Pérez-Priego et al., 2005;
Suárez et al., 2008; Thenot et al., 2002). Nevertheless, the PRI index
cannot be readily used to map vegetation stress without considering
leaf and canopy structural effects on the index. PRI bands at 531 and
570 nm are affected by both leaf and canopy parameters such as
chlorophyll content (Cab), dry matter (Cm), leaf thickness, leaf area
index (LAI), and leaf angle distribution function (LADF), among others
(Barton & North, 2001; Suárez et al., 2008). Thus, PRI maps obtained
over canopies with variable LAI mask the sensitivity of the index to
stress, mostly tracking the spatial variation of the canopy leaf area
density and structure (Barton & North, 2001; Suárez et al., 2008).
Consequently, modelling work at leaf and canopy scale is needed to
enable an operational application of PRI to map water stress in non-
homogeneous canopies where structural changes play the main role
in the reflectance signature.

A new modelling method is presented in this paper based on
radiative transfer simulation to estimate a theoretical PRI baseline

Fig. 1. Overview of the field experiments presented in this study: (a) olive orchard and the three irrigation treatments applied: Full irrigation (R), and two regulated deficit irrigation
treatments (RDI1, RDI2); (b) peach orchard with one full irrigation treatment (R) and a regulated deficit irrigation treatment (RDI); and (c) corn field with 24 different cultivars
replicated three times.
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for non-stress conditions for two tree species, olive and peach, and
for an herbaceous continuous canopy of maize. The method
compares imaged PRI with theoretical non-stress PRI obtained
through model inversion for existing structural and background
conditions, defining a within field threshold to detect stressed
vegetation.

2. Methods

2.1. Study sites

The three main study sites used for field and airborne data
collection are located in Córdoba, southern Spain (37.8°N, 4.8°W), on
soils classified as Typic Xerofluvents. The climate is Mediterranean
with an annual rainfall of 650 mm concentrated between autumn
and spring. The first study site corresponds to a 4 ha irrigated-olive
orchard (Olea europaea L. cv. “Arbequino”) established in 1997 in a
3.5×7 m grid. The tree lines follow a north–south direction and the
trees were planted on ridges to avoid flooding. The soil had a sandy
stratum at 1.5 m and was kept under no-tillage with herbicides. The
experiment was designed in an area of six rows where three drip-

irrigation treatments were applied, differing in water amounts:
(i) constant application rate of 2.8 mm/day during the irrigation
season (enough to meet the tree demand, this treatment was used as
a reference, R), (ii) application rate of 0.7 mm/day (deficit treatment
RDI1), and (iii) an application rate of 1.2 mm/day during the periods
between 14 June to 5 July, and from 6 September to 19 October
(deficit treatment RDI2). Additional information about the study site
and the experiments can be found in previous publications (Pérez-
Priego et al., 2005; Sepulcre-Cantó et al., 2006). Fig. 1a depicts the
olive orchard and the treatment block location within the olive
grove.

The second study site was within a commercial peach orchard
(Prunus persica cv. “BabyGold8”) planted in 1990 in north–south
direction in a 5×3.3 m grid on a loam soil without restrictions for
root growth down to 3 m depth. A subset of 6 lines×30 peach trees
each were irrigated differently than the rest of the orchard. The non-
stressed trees were drip irrigated starting on 18th May 2007 with an
application rate equivalent to 80% of calculated crop ET. The
regulated deficit irrigation treatment (RDI) started irrigation on
5th July at Stage III of fruit development (rapid growth stage) over-
irrigating afterwards until tree water status was fully recovered.

Fig. 2. Leaf reflectance and transmittancemeasurements takenwith an integrated sphere corresponding to a subsample of 30 spectrameasured on peach leaves (a and b). Reflectance
and transmittance corresponding to water-stressed and well-watered olive leaves (c and d).
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The concept of regulated deficit irrigation (RDI) was first proposed
by Chalmers et al. (1981) to control vegetative growth in peach
orchards applying water deficits that did not reduce economic yield
(Fereres & Soriano, 2007).

The third study site consisted on a maize field that had 24
varieties replicated three times, yielding a total of 72 plots of
3 m×9 m area. Irrigation had not been applied prior to image
acquisition on 6th of June 2007. Afterwards, irrigation was applied
and by the 2nd of July when a second airborne image was acquired,
the crop had recovered from water stress. The genetic variability of
the different maize cultivars generated a gradient in their pheno-
logical stages of development, and consequently, there was
variability in LAI values between the different plots. A fourth study
site located in Zaragoza (Northern Spain, 41°46′ North, 1°37′ East)
was used to conduct an intensive leaf sampling campaign to study
the leaf optical properties of a peach orchard using an integrating
sphere in the laboratory. The leaf optical properties of the leaves
varied greatly due to nutrient stress conditions found in areas of the
field.

2.2. Leaf-level measurements

Reflectance and transmittance measurements from leaves with
different chlorophyll content and water stress levels were conducted
to assess the influence of stress on the visible spectral region and,
particularly, on the PRI index. In addition, optical variability of leaves
enabled the estimation of the structural leaf parameter N (used in
PROSPECT) required later for the modelling approach presented here
(the complete experiment is described in Kempeneers et al., 2008).
The instrument used was a Li-Cor 1800-12 integrating sphere (Li-Cor,
Lincoln, NE, USA) coupled to a fibre optics spectrometer (Ocean Optics
model USB2000 spectrometer, Ocean Optics, Dunedin, FL, USA).
Reflectance and transmittance measurements of peach (Fig. 2a
and b) and olive leaves (Fig. 2c and d) show variations in the visible
spectral region due to nutrient and water stress levels affecting both
chlorophyll and xanthophyll pigments.

During field campaigns, leaf reflectance measurements were also
conducted in the study sites at the time of the flights with an ASD
Field Spectrometer (FieldSpec Handheld Pro, ASD Inc., CO, USA) with
a leaf clip probe. A total of 9 leaves per tree on 3 trees per treatment
(olive and peach orchards) and 9 leaves per block on 6 blocks
(maize) were measured in the field on each flight. Stem water
potential measurements were conducted from the same sampled
tree/blocks with a pressure chamber (Soil Moisture Equipment Corp.
model 3000, Santa Barbara, CA, USA), and stomatal conductance was
measured with a leaf porometer (model SC-1, Decagon Devices,
Washington, DC, USA). In the olive tree site, a steady-state
porometer was used to monitor stomatal conductance (model
PMR-4, PP Systems, Hitchin Herts, UK).

2.3. Airborne imagery acquisition

A 6-band multispectral camera (MCA-6, Tetracam, Inc., California,
USA) flying at 150m above ground level (Berni et al, in press) was used
to acquire imagery from the three study sites. The camera is built on 6
image sensors with 25 mm diameter bandpass filters of 10 nm FWHM
(Andover Corporation, NH, USA). The image resolution is
1280×1024 pixels with 10-bit radiometric resolution and optic focal
length of 8.5 mm, yielding an angular field-of-view (FOV) of
42.8°×34.7° and a spatial resolution of 15 cm at 150 m altitude. The
bandsets used in each of the study sites comprised bands centered at
530 and 570 nm used to calculate the PRI index, as well as 550 nm,
670 nm, 700 nm and 800 nm bands to calculate TCARI/OSAVI index for
chlorophyll content estimation (Haboudane et al., 2002), and NDVI for
LAI estimation (Rouse et al., 1974).

Geometric calibration was performed using Bouguet's calibra-
tion (Bouguet, 2001) in order to recover the following intrinsic
camera parameters: focal distance, principal point coordinates and
lens radial distortion. The lens distortion model used was based on
Wolf (1983), in which tangential and radial distortion are
estimated, however in this case only the tangential distortion was
taken into account (Berni et al., in press). Aerial triangulation was

Fig. 3. (a) Imagery acquired with a thermal camera over the peach orchard where full irrigation (R) and deficit irrigation treatments (RDI) were applied; (b) Map of surface
temperature of the experimental orchard.
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used to georreference the multispectral images using Leica LPS
(Leica Geosystems, Switzerland). Further correction was applied
using the position of one of the cameras as reference and
estimating the relative position of the other five by solving the
system for each reference-camera pair. Images were calibrated to
ground reflectance using the empirical line method with two
reference targets (Smith & Milton, 1999). Two 4-square-meter black
and white targets were leveled and placed in a central location of
the flight path, measuring target reflectance with an ASD Field
Spectrometer (FieldSpec Handheld Pro, ASD Inc., CO, USA) cali-
brated using a Spectralon panel (SRT-99-180, LabSphere, NH, USA).
The empirical line method used to obtain surface reflectance from
camera raw DN-values was validated in the study sites yielding a
1.17% RMSE (n=90) (Berni et al., in press). The Photochemical
Reflectance Index (PRI) (Gamon et al., 1992), sensitive to the de-
epoxidation state of the xanthophyll cycle pigments and used in
previous studies to assess water stress (Suárez et al., 2008; Thenot
et al., 2002), was calculated with the MCA-6 camera using two
10 nm FWHM filters centred at 530 and 570 nm wavelengths

(Eq. (1)). Bands situated at 550, 670, 700 and 800 nm were used to
calculate TCARI/OSAVI and NDVI indices using the Eqs. (2) and (3).

PRI =
R570−R530

R570 + R530
ð1Þ

TCARI=OSAVI =
3⁎½ R700−R670ð Þ−0:2⁎ R700−R550ð Þ⁎ R700=R670ð Þ�
1 + 0:16ð Þ⁎ R800−R670ð Þ= R800 + R670 + 0:16ð Þ ð2Þ

NDVI =
R800−R670

R800 + R670
ð3Þ

The thermal camera installed on board of the airborne platform
was the Thermovision A40M (FLIR, USA), acquiring one image every
2 s during the flight. The image resolution was 320×240 pixels and
16 bits of at-sensor calibrated radiance with a 40° FOV lens, yielding
40 cm spatial resolution at 150 m altitude. The image sensor is a Focal
Plane Array (FPA) based on uncooled microbolometers with a spectral
range of 7.5–13 μm yielding calibrated radiance in the range 233–
393 K. The camera was calibrated in the laboratory using a calibration

Fig. 4. Spectra used for modelling inversion for the peach orchard (a) and for the olive orchard (b). Relationship between chlorophyll content (Cab) and PRI for different N values (c),
and for different LAI values (d).
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blackbody source (RAYBB400, Raytek, CA, USA), and switched on 1 h
before flight until stable. Two internal calibrations are implemented in
the sensor, a non-uniformity correction (NUC) and an internal
temperature calibration. Atmospheric correction was needed to

retrieve surface temperature, as described in Berni et al. (in press).
Single channel atmospheric correction was conducted using the Ra-
diative Transfer Equation (RTE), where the needed input parameters
are atmospheric transmittance (τλ), emissivity (ελ), down-welling
(Latm,λ

↓ ) and up-welling thermal radiation (Latm,λ
↑ ) which are driven

mainly bywater vapor content, air temperature and distance to object.
The atmospheric calibration applied to the thermal images was
validated in a specific campaign described in Berni et al. (in press)
measuring simultaneously surface temperature with a thermal gun
over 3 different surfaces: soil, white and black targets. The RMSE
before calibrationwas 3.44 K, which was reduced down to 0.89 K after
atmospheric correction. Fig. 3 shows a thermal image acquired over
the peach orchard after conducting atmospheric correction (Fig. 3a)
where differences between irrigated and water-stressed trees can be
observed (Fig. 3b). Geometric calibration was conducted using the
same methodology that was applied to the multispectral camera, but
using resistive wires in the calibration pattern (Berni et al., in press).
Exterior orientation, including camera position coordinates, pitch, roll
and yaw, was acquired by the inertial navigation system onboard,
allowing an initial estimate for the automated aerotriangulation.
Sensor-to-ground distance across the image was calculated pixel by
pixel, taking into account the effects of the camera's wide field of view
and the airborne platform tilt angles. This distance was used to

Table 1
Nominal values and range of parameters used to construct the look-up tables for leaf
and canopy modelling inversion with PROSPECT and FLIGHT models for the olive and
peach orchard study sites

PROSPECT input parameters Values/units used

Olive trees Peach trees

N structural parameter 2.9 1.6
Cab (μg/cm2) 50–90 50–72
Cm 0.025 0.015
Cw 0.025 0.015
Cs 0 0

FLIGHT input parameters Olive trees Peach trees

Leaf optical and structural parameters
Hemispherical reflectance and transmittance
of green leaves

PROSPECT PROSPECT

Hemispherical reflectance and transmittance
of senescent leaves

Not used Not used

Leaf equivalent radius 0.007 m 0.02 m

Canopy layer and structural parameters
Leaf Area Index of vegetation 2–4 m2/m2 1–2.6 m2/m2

Total scene Leaf Area Index m2/m2 m2/m2

Fractional cover 0.32 m2/m2 0.22 m2/m2

Leaf Angle Distribution (LAD) Empirical Spherical
Fraction of green leaves 1 1
Fraction of senescent leaves 0 0
Fraction of bark 0 0
Hemispherical reflectance and transmittance of bark Not used Not used
Number of stands and position coordinates Coord. (m) Coord. (m)
Crown shape Elliptical Elliptical
Crown height and radius m m
Trunk height and radius m m

Background and viewing geometry
Solar zenith and azimuth angles Degrees Degrees
Sensor zenith and azimuth angles Degrees Degrees
Soil reflectance From image From image
Soil roughness 0 0
Aerosol optical thickness (AOD) 0.15 0.15

Leaf structural parameters and leaf biochemical parameters were used for leaf-level
simulation of reflectance and transmittance using PROSPECT. Canopy structural
parameters were used as inputs in the FLIGHT model for simulating canopy
reflectance by radiative transfer.

Table 2
Nominal values and range of parameters used for leaf and canopy model inversion
conducted with PROSPECT and SAILH for the corn study site

PROSPECT-SAILH input parameters Values/units used

Maize

Leaf optical and structural parameters
N structural parameter 1.2–1.6
Cab (μg/cm2) 5–100
Cm 0.0035
Cw 0.0015
Cs 0

Canopy layer and structural parameters
Hot Spot size 0.01
Leaf Area Index 0.1–12
Leaf Angle Distribution (LAD) Spherical

Background and viewing geometry
Solar zenith and azimuth angles Degrees
Soil reflectance From image

Fig. 5. Simulated PRI (sPRI) against airborne PRI (a), showing the PRI−sPRI differences(b).
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generate a transmittance and thermal radiation map for an accurate
calculation of surface temperature.

2.4. Radiative transfer modelling methods for simulating non-stress PRI

Radiative transfer simulations were conducted with PROSPECT
(Jacquemoud & Baret, 1990) linked with SAILH model (Verhoef, 1984)
for the maize field (a homogeneous canopy), and PROSPECT model

linked to FLIGHT (North, 1996) for tree crops (olive and peach trees).
The PROSPECT leaf optical properties model has been linked with
several canopy reflectance models based on SAIL, such as GeoSAIL
(Verhoef & Bach, 2003), 2M-SAIL (Weiss et al., 2001) or SAILH (hot spot
effect added by Kuusk,1991). An exhaustive reviewofmodels linked to
PROSPECT (Jacquemoud et al., in press) include continuous crops
(Bacour et al., 2002; Baret et al., 1995; Combal et al., 2002; Casa &
Jones, 2004; González-Sanpedro et al., 2008; Jacquemoud et al., 1994,
1995, 2000; Koetz et al., 2005; Weiss et al., 2002; Yang & Ling, 2004;
Zarco-Tejada et al., 2001), forestry areas (Le Maire et al., 2008; Meroni
et al., 2004; Soudani et al., 2006; Zarco-Tejada et al., 2003, 2004;
Zhang et al., 2005), and the global domain (Bacour et al., 2006; Baret et
al., 2007; Trombetti et al., 2008; Weiss et al., 2007). In this study, the
model PROSPECT was coupled to the SAILH model to simulate the
canopy reflectance of the corn field under different irrigation
treatments.

The 3-D Forest Light Interaction Model, (FLIGHT) is based on Monte
Carlo ray tracing (MCRT) method as a tool to simulate the radiative
transfer in a canopy structure (North, 1996). At the top of the canopy,
the interaction of radiation within the vegetation depends on the
contribution of several components such as leaves, stems, soil
background, illumination and view properties of each canopy
elements as well as on their number, area, orientation and location
in space (Goel & Thompson, 2000; Koetz et al., 2005). FLIGHT radiative
transfer model was previously used to simulate discontinuous canopy
reflectance in conifer forests (Dawson et al., 1999; Koetz et al., 2004;
Verrels et al., 2008) and in olive orchards (Suárez et al., 2008). In this
work, the FLIGHT model was used together with PROSPECT to
simulate peach and olive tree crown reflectance, specifically at 530

Fig. 7. Average crown reflectance derived from imagery of olive trees from the RDI and R
treatments (a); spectra on the PRI region (b).

Fig. 6. (a) Peach leaf reflectance measured in the field for a stressed and an unstressed
peach leaf. (b) Leaf spectra on the two wavelengths (530 and 570 nm) used to calculate
the PRI index. (c) Leaf spectra on the PRI region and inverted spectra of the stressed leaf
showing the effects of chlorophyll loss on leaf spectra and the effects of xanthophylls
absorption.
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and 570 nm bands for effects of bidirectional reflectance distribution
function (BRDF) on PRI simulation.

A sensitivity analysis was conducted to assess the influence of
model input parameters on PRI bands, specifically leaf Cab and N, and
canopy LAI (Fig. 4). The simulation conducted suggests that N and Cab
leaf parameters, and the LAI canopy parameter are critical for
simulating PRI at the canopy level. The suggested method consists
on simulating a non-stress PRI value for a crop field (sPRI) by model
inversion using the canopy reflectance from airborne imagery. The
difference found between the image PRI (per tree or block level) and
the non-stress simulated PRI by model inversion (sPRI), calculated as
PRI−sPRI, would be associated with xanthophyll absorption levels at
530 nm.

The methodology applied for orchards through PROSPECT-FLIGHT
model inversion was based on generating look-up tables indepen-
dently for each crop and imagery conditions. Themethod consisted on
targeting pure crowns under non-water-deficit conditions, and
inverting the coupled leaf-canopy models for Cab and LAI. Model
inversion was conducted fixing N (structural parameter), Cm (dry
matter) and Cw (water content) values from the literature (Kempe-
neers et al., 2008, for peach trees; Zarco-Tejada et al., 2004 for olive
trees). Cab and LAI were allowed to vary in the leaf- and canopy-level
model inversion step, respectively. The rest of parameters were kept
fixed, characterizing each crop field with inputs to represent the
architecture of the orchard. The parameter ranges used to build the
look-up tables are summarized in Table 1. The resulting simulated LUT
spectra for olive and peach trees are presented in Fig. 4a and b.

For the corn study site, the parameters used for the coupled
PROSPECT-SAILH model inversion are presented in Table 2. In this
case, the parameters N and Cab at leaf level, and LAI at canopy level
were inverted. The rest of the inputs were fixed to values and ranges
found in literature for corn (Haboudane et al., 2004). Spectra were
extracted from images acquired over the corn field for each of the 72
variety blocks. Block spectra were used as input for the model
inversion, accounting for large within-field LAI differences found in
the variety-trial study.

Simulated PRI obtained by model inversion for each crop field
(sPRI) was compared with PRI extracted from the canopy reflectance
for each pure crown/block. In addition, simulated PRI and image-
extracted PRI from each orchard tree/corn block were compared
against crown temperature and water potential measurements
acquired at the time of each flight. The difference PRI−sPRI and the
temperature for each corn block were assessed before and after
irrigation for morning and afternoon flights, assessing the stress
detection capabilities of the proposed methodology.

To demonstrate the successful simulation of PRI by model
inversion (sPRI) using the airborne bandset for this study, one
hundred synthetic spectra were randomly generated for N [1.2–1.6],
Cab [5–90 μg/cm2] and LAI [0.1–12] values. The bandset used for the
simulation consisted on 5 bands located in the visible-NIR region at
530, 570, 670, 700 and 800 nm, bandset selected for the airborne
camera to enable the calculation of PRI, TCARI/OSAVI, and NDVI. The
rest of input values used are the ones presented in Table 2 for the corn
study site. The input parameters Cab, LAI and N, and the PRI index

Fig. 8. Relationships obtained between crown/canopy PRI and vegetation surface temperatures derived from imagery for (a) olive trees; (b) peach trees; (c) corn, and (d) between
canopy NDVI and temperature for corn.

737L. Suárez et al. / Remote Sensing of Environment 113 (2009) 730–744



Author's personal copy

were compared with the inversion outputs, yielding a RMSE of
5.45 μg/cm2 (Cab), 1.1 (LAI), 0.13 (N). The results of this modelling
approach confirm that PRI can be successfully simulated with 5-
channel spectra (Fig. 5a), obtaining PRI−sPRI values close to 0 for a
wide range of input Cab, N and LAI (Fig. 5b). The method proposed
here based on using physical models, enabled the simulation of PRI for
non-stress conditions accounting for N, Cab and LAI differences across
the cropped field.

3. Results

3.1. PRI measurements at the leaf level

Leaf level measurements on olive and peach tree leaves showed
differences in the leaf spectra between the full-irrigated (FI) and the
regulated deficit irrigation (RDI) treatments. Fig. 6a shows the mean
leaf spectra corresponding to both irrigation treatments. In the near
infra-red part of the spectrum, differences can be detected due to leaf
structural changes in response towater stress. Differences in the green
region (Fig. 6b) are due to confounding effects of both chlorophyll
content and xanthophyll absorption at 530 nm due to thewater stress.
To understand the confounding effects of chlorophyll absorption and
the xanthophyll absorption, a modelling approach was undertaken.
The PROSPECT radiative transfer model was used to invert the mean
leaf spectrum measured under regulated deficit irrigation. Spectral
differences found at 530 nm between the PROSPECT-simulated
spectrum and the measured water-stress reflectance would corre-
spond to xanthophyll pigment absorption (Fig. 6c).

3.2. PRI measurements at the canopy level

The mean spectrum corresponding to FI trees and RDI is shown in
Fig. 7a. Differences due to water stress at 530 and 570 nm can be seen
in Fig. 7b. The large differences at 530 nm between the two spectra are
due to increased xanthophyll pigment absorption under water stress.
At canopy scale, the relationship between PRI and temperature
derived from the thermal airborne camera is shown in Fig. 8 for
olive trees (Fig. 8a), for peach trees (Fig. 8b), and formaize (Fig. 8c). For
olive and peach trees, pure crown PRI was calculated from airborne
imagery and related to surface temperature estimated from the
airborne thermal imagery. Canopy temperature (T) was related to PRI,
coefficients of determination of the regression lines of PRI against T
yielded r2=0.65 for the olive trees, and r2=0.8 for the peach trees. For
the same set of peach trees the determination coefficient of the
relationship of airborne-derived temperaturewith TCARI/OSAVI index
at canopy scale yielded 0.0017, demonstrating that PRI correlation
with T was not due to differences in Chlorophyll content. The analysis
on the maize field was conducted at block scale with PRI and T
calculated for each of the 72 experimental blocks in the field. The
relationship shown (Fig. 8c) corresponds to a set of blocks with similar
NDVI, therefore avoiding structural effects on the PRI vs. T relation-
ship. The determination coefficient for that relationship (r2=0.72)
illustrates the consistency of PRI as an indicator of water stress in
maize under equal structural conditions. For the same set of blocks
with similar NDVI, the relationship between NDVI and canopy
temperature (Fig. 8d), yielded a low coefficient of determination
(r2=0.26), demonstrating that structure was not the driver between

Fig. 9. Comparison between mean full-irrigated crown spectrum and the inverted modelled spectrum for (a) olive, and (c) peach trees. Relationship between PRI and water potential
for (b) olive trees, and (d) PRI with temperature for peach trees. The relative position of individual crown PRI as compared with the calculated PRI from the theoretical spectrum is
shown.
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PRI and canopy T relationship. In the three study sites, peach, olive
orchards and maize field, airborne canopy PRI values for water
stressed trees/blocks were higher than the PRI values from fully
irrigated vegetation.

3.3. Assessing stress with PRI through model inversion

A PROSPECT-FLIGHTmodel inversionmethodwas conducted using
the mean spectra extracted from the airborne imagery for the olive

and the peach orchards. Fig. 9a and c shows the image spectra used for
the inversion for olive and peach trees, respectively, along with
canopy reflectance obtained by model inversion. PRI values corre-
sponding to the inverted spectra (Fig. 9b and d) used as the theoretical
PRI for non-stress conditions (sPRI) are shown along with the PRI
values extracted from pure crowns on both orchards. The crown PRI
values for full and deficit irrigation are compared against the
theoretical PRI (sPRI) for non-stress conditions (Fig. 9b and d). Results
show that PRI for RDI trees are higher than simulated non-stress PRI

Fig. 10. (a) Overview of the olive orchard experiment with three irrigation treatments applied; (b) crown PRI minus simulated PRI (PRI−sPRI) map of the experiment; (c) crown NDVI
map.
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for both olive and peach trees. On the contrary, all FI trees show PRI
values around or below the simulated PRI value for non-stress
conditions. Consistently, RDI trees showed higher PRI values than the
simulated non-stress PRI values derived from model inversion. This
method enables an operational detection of stressed trees using the
modelling approach to account for LAI and chlorophyll content effects
on modelled PRI index values. A map was generated representing the
distance PRI−sPRI as an indicator of water stress for the olive orchard
(Fig. 10a). The map shows the spatial distribution of water stress as a
function of irrigation levels (Fig. 10b). Positive values of PRI−sPRI (red
color) indicate water stress, while negative values (green color)
indicate non-stress conditions. The PRI−sPRI map clearly shows that
water-stress is detected in trees of the RDI1 and RDI2 treatments
(Fig. 10a), while the FI treatments are well identified as control. The
spatial variability of canopy leaf area index through the normalized
difference vegetation index (NDVI) (Fig. 10c) was assessed. The NDVI
map, on the contrary, did not detect water stress levels as well as the
PRI−sPRI indicator did. These results demonstrate that a physiological
index such as PRI, when modelled to account for leaf and canopy
inputs N, Cab and LAI, was superior to NDVI to detect within-field
water stress variability.

In the maize study site, the mean field pure-vegetation spectrum
was inverted using the coupled PROSPECT-SAILHmodel. The inversion
method was conducted on each of the four images acquired in this
study, consisting on pre- and post-irrigation dates at 10.00–11.00 GMT
(morning) and 13.00–14.00 GMT (midday). Two images were acquired
under water deficit conditions in the morning and at midday of June
6th. Another two images were acquired after irrigationwas applied on

July 2nd in the morning and at midday. After conducting the model
inversion for the four conditions, simulated non-stress PRI (sPRI) was
calculated and compared to each block PRI value extracted from the
imagery. Block PRI values are shown against the simulated non-stress
PRI baseline (sPRI) for the maize field (Fig. 11a to d). Before irrigation,
on the 6th of June (Fig. 11a and c) block PRI values were located below
or around the theoretical non-stress sPRI baseline in the morning
(10:10 GMT). At midday (14:20 GMT), on the contrary, airborne PRI
values were located over the theoretical sPRI baseline, suggesting that
the blocks are under stress conditions (Fig.11c). After irrigation, on the
2nd of July, airborne PRI values were around or below the theoretical
non-stress sPRI obtained by PROSPECT-SAILH inversion, both in the
morning (11:03 GMT; Fig. 11b) and also at midday (13:11 GMT;
Fig. 11d). These results suggest that this methodology is capable of
detecting water stress in continuous crop canopies such as maize,
being able to assess the response to irrigationwith the PRI indexwhen
modelled for N, Cab and LAI effects.

A second modelling approach was undertaken to deal with crop
canopy structural effects for each maize block extracted from the
reflectance imagery. Each block reflectance extracted from the
airborne imagery was used as input for model inversion, obtaining
the non-stress PRI value for each maize block (sPRI). For each of the
72 blocks extracted from the image, the difference PRI−sPRI was
calculated. Block PRI− sPRI along with block canopy temperature
minus air temperature (Tc−Ta) are shown in Fig. 12 for pre- and
post-irrigation in the morning and midday. On the 6th of June,
before irrigation, values for PRI−sPRI and Tc−Ta at 10:10 GMT and at
14:20 GMT are shown in Fig. 12a and c. The mean Tc−Ta values

Fig. 11. Corn PRI values compared with the simulated PRI values (sPRI), calculated before irrigation for the morning (a), at midday (b), and after irrigation, in the morning (c) and at
midday (d).
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obtained in the morning prior to irrigation was −0.02 K, rising up to
3.87 K at midday, with higher stress conditions. Airborne Tc−Ta values
were consistent with the PRI−sPRI values, PRI−sPRI and Tc−Ta values
showed a wide range of variability. Such high variability suggests the
different cultivars responded differently to water deprivation, as Tc−Ta
differences were up to 8 K. The same variability is obtained in PRI−sPRI
values as compared with Tc−Ta variability, concluding that this
methodology could be useful for screening different cultivars in their
response to water deficits. Results on the data acquired after irrigation
(on the 2nd of July) are shown in Fig. 12b and d. Again, Tc−Ta values are
lower (yielding an average value of −3.13 K in the morning and −1.13 K
at midday), being consistent with PRI−sPRI values around zero,
showing that airborne PRI values are close to the simulated non-stress
PRI values as the crop is recovered from water stress. Fig. 13a to d
shows PRI−sPRI maps, observing that maize fields under stress
conditions before irrigation do not present stress symptoms in the
morning (Fig. 13a), while high PRI−sPRI values showed significant
stress at midday. After irrigation, maize blocks did not show stress in
the morning (Fig. 13c), while slightly higher PRI− sPRI differences
were found at midday (Fig. 13d), as higher evaporative demand
exists. Consistently, Fig. 13 demonstrates that the highest stress

conditions were detected at midday by the PRI− sPRI indicator
before irrigation.

4. Conclusions

This study presents a methodology for water stress detection in
annual and perennial irrigated crops using remotely sensed PRI index
and radiative transfer modelling. The method accounts for leaf and
canopy inputs N, Cab and LAI to simulate the PRI values to identify
crop crowns/blocks under stress. The methodology presented was
successfully tested on two tree orchards (olive and peach trees) and a
closed canopy of an annual crop (maize). The PRI index tracked water
stress levels in crops under deficit irrigation, and yielded robust
relationships against canopy temperatures (r2=0.65 for olive trees,
r2=0.8 for peach trees, and r2=0.72 for maize). Moreover, within-field
structural effects on PRI were assessed, demonstrating that PRI was
successfully related with canopy temperature (r2=0.72) for crop
blocks under same NDVI values, thus showing that PRI is sensitive to
water stress conditions independently of canopy structural effects. In
addition, the lack of relationship between crown temperature and
TCARI/OSAVI for peach trees (r2=0.0017) demonstrates PRI is not

Fig.12. Corn block PRI−sPRI (diamonds) and block surface temperatureminus air temperature (Tc−Ta; dashes) in themorning andmidday before irrigation (a and b respectively) and
after irrigation (c and d).
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driven by differences in chlorophyll content. The ability of PRI
to detect water stress before vegetation structure is affected is critical
as a pre-visual indicator of stress. However, PRI was highly affected by
both background and canopy structure, requiring correct modelling
methods for successful mapping of water stress and its spatial
variability. Modelling inversion methods enabled accounting for
background and crop/orchard characteristics independently for
each crop field and imagery acquired with the airborne multi-
spectral sensor. Two different canopy radiative transfer models
were used depending on the crop structure, SAILH for maize crop
and FLIGHT model for tree orchards (olive and peach trees), while
simulations at leaf scale were conducted successfully with the
PROSPECT leaf model.

Results demonstrated that airborne canopy PRI values higher than
the theoretical non-stress PRI, when accounting for N, Cab and LAI via

radiative transfermodels, correspond to vegetation pixels under water
stress. Consistency was found in three crops where this methodology
was applied. Airborne PRI values compared with the theoretical non-
stress PRI, calculated as PRI−sPRI, agreed in amplitude with the
irrigation levels applied, and the stress level before and after
irrigation. The results obtained in this study demonstrate that PRI is
a pre-visual indicator of water stress, i.e., when no effects could be
detected visually, and it can be modelled for estimating non-stress
thresholds to be used for stress-detection. Finally, this methodology
based on a narrow-band index derived from the visible part of the
spectrum may be potentially used as an alternative to thermal
imagery for assessing water stress. High-resolution thermal imagers
are generally more expensive and their availability more limited than
CCD/CMOS instruments onboard airborne and potential satellite
platforms.

Fig. 13. Corn PRI minus block simulated PRI (PRI−sPRI) for the four image acquisitions before irrigation ((a) in the morning and (b) at midday), and after irrigation in the morning (c) and
midday (d).
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