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Abstract Quick and low cost delineation of site-specific management zones (SSMZ)

would improve applications of precision agriculture. In this study, a new method for

delineating SSMZ using object-oriented segmentation of airborne imagery was demon-

strated. Three remote sensing domains—spectral, spatial, and temporal- are exploited to

improve the SSMZ relationship to yield. Common vegetation indices (VI), and first and

second derivatives (q0, q00) from twelve airborne hyperspectral images of a cotton field for

one season q0 were used as input layers for object-oriented segmentation. The optimal

combination of VI, SSMZ size and crop phenological stage were used as input variables for

SSMZ delineation, determined by maximizing the correlation to segmented yield monitor

maps. Combining narrow band vegetation indices and object-oriented segmentation pro-

vided higher correlation between VI and yield at SSMZ scale than that at pixel scale by

reducing multi-resource data noise. VI performance varied during the cotton growing

season, providing better SSMZ delineation at the beginning and middle of the season (days

after planting (DAP) 66–143).The optimal scale determined for SSMZ delineation was

approximately 240 polygons for the study field, but the method also provided flexibility

enabling the setting of practical scales for a given field. For a defined scale, the optimal
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single phenological stage for the study field was near July 11 (DAP 87) early in the

growing season. SSMZs determined from multispectral VIs at a single stage were also

satisfactory; compared to hyperspectral indices, temporal resolution of multi-spectral data

seems more important for SSMZ delineation.

Keywords Site-specific management zone � Object-oriented segmentation � Scale �
Hyperspectral remote sensing � Yield prediction � Vegetation indices

Introduction

Limited resources, serious environmental problems and the increasing demands of human

population require that Earth resources are managed more judiciously. Precision agricul-

ture proposes to optimize input use efficiency by site-specific application of nutrients and

pesticides on small, within-field management zones of more homogeneous soil properties

and crop growth conditions (Zhang et al. 2002). Within-field management zones are

defined as site-specific management zones (SSMZs) (Davatgar et al. 2012) or site-specific

management units (SSMUs) (López-Lozano et al. 2010), and there has been extensive

study regarding the delineation of the spatial units using various approaches. Many studies

have analyzed spatial patterns of soil properties derived from field grid sampling (Franzen

et al. 2002) or mobile sensors (Johnson et al. 2003) to delineate SSMZ with geostatistical

and fuzzy set clustering. The primary weakness of point sampling techniques is in the

generalization of individual data points to define spatial variability in an effort to reduce

the expense of collecting large numbers of sample points (Senay et al. 1998). In addition, a

common disadvantage is the tendency to focus on one or two soil properties, without

regard for the variability of other characteristics that potentially influence SSMZ delin-

eation, such as soil electrical conductivity (Li et al. 2007; Moral et al. 2010; Scudiero et al.

2013). However, crop growth and yield are not determined solely by soil biophysical or

chemical properties; they are also influenced by topography, local hydrology and micro-

meteorology. Since crop vigor is often the best indicator of yield, imagery obtained during

the growing season provides a valuable tool for including multiple factors in SSMZ

delineation. The development of tractor- and harvester-mounted GPS and yield monitors

brought additional tools for mapping crop yield and defining SSMZs (Simbahan et al.

2004; Diker et al. 2004). SSMZs from yield maps highlight the accumulative effect of

abiotic stress on crops and identify areas which may require differential management.

However, the final yield map does not, per se, provide detailed information on the factors

which are contributing significantly to any heterogeneous distribution of crop yield. The

yield data is also gathered at the end of the season after any potential management

intervention opportunities. In-season, multi-temporal remote sensing images may be useful

in identifying areas of production difference for detailed investigation during the growing

season.

There is a growing demand for rapid, non-invasive acquisition of fine-scale information

on soil and plant variation for site-specific management (De Benedetto et al. 2013). Both

aircraft- and satellite-based remote sensing (RS) provide raster maps built on analysis of

contiguous pixels rather than a distributed group of points (McBratney et al. 2003). Timely

aircraft sensor images have a unique role for within-season crop and soil spatio-temporal

analysis and time-critical crop management (Moran et al. 1997; Hbirkou et al. 2012), and
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use has steadily increased over the past decade (Yang et al. 2009; Zarco-Tejada et al. 2005;

Uno et al. 2005). De Benedetto et al. (2013) identified homogenous areas within com-

mercial fields using a single mid-season WorldView-2 multispectral satellite image.

López-Lozano et al. (2010) used Quickbird imagery to estimate LAI and integrated it with

yield and soil property maps to define SSMU within a commercial maize site. For addi-

tional papers describing SSMZs with RS imagery, directly or indirectly, readers should

refer to López-Lozano et al. (2010), Liu et al. (2005) and Boydell and McBratney (2002).

Overall, remote sensing image data and spatial statistical methods can provide valuable

and comprehensive information for site-specific management (Lan et al. 2010).

The field of image classification is experiencing a paradigm shift from pixel-based to

object-oriented (OO) image analysis techniques (Gamanya et al. 2009). As the spatial

resolution of remote sensing data increases, the so-called ‘‘salt-and-pepper’’ problem of

pixel-based classification becomes more serious. This limitation has facilitated the emer-

gence of OO classification of high spatial resolution images (Ouyang et al. 2011).

Numerous published empirical studies reviewed by Blaschke and Strobl (2001) show

sufficient evidence of the advantages of OO classification over pixel-based classification.

The basic processing units of OO image analysis are clusters of similar pixels, known as

image objects. Farming practices and environmental studies are often conducted not on

individual pixels, but on defined zones that can be delimited by combining spectral, spatial

and temporal information together into image objects. OO analysis provides meaningful

statistics and texture calculations, increases uncorrelated feature space involving shapes

(e.g. length and number of edges) and topological features (neighbors and super-objects),

and improves the relationship between real-world and image objects (Benz et al. 2004).

In past studies using hyperspectral imagery (HSI), more attention was paid to spectral

information rather than spatial information. Subsequently, spectral analysis methods to

monitor soil and vegetation biophysico-chemical properties were developed without regard

to spatial context and the potential advantages of combined spatial and spectral synergy.

Also, previous OO investigations concentrated on segmenting mainly high spatial reso-

lution broad-band images, such as IKONOS (GeoEye, Dulles, VA, USA) and QuickBird

(DigitalGlobe, Longmont, C), USA), thus missing potential hyperspectral and temporal

information (Johansen et al. 2007; Van Coillie et al. 2007). Combining high spatial and

spectral resolution, HSI provides increased information over that available from either

separately, and holds promise for the development of powerful tools in the modern RS

arena (Ben-Dor et al. 2009). With the addition of frequent acquisitions, HSI completes the

temporal-spatial-spectral domain. This image mapping contains spectroscopy for soil and

vegetation variation, spatial context of similarity among pixels, and a temporal view of

growth variation. Hence HSI can exploit methods of temporal, spatial and spectral analysis

required to advance soil and vegetation spectroscopy (Ben-Dor et al. 2009).

To demonstrate this multi-domain mapping concept, a set of repeated hyperspectral

images of high spatial resolution (1 m) were acquired of a cotton field and classified using

OO segmentation to delineate SSMZs. The objectives of this study were to: (1) incorporate

hyperspectral and multi-temporal data with OO segmentation to emphasize spatial delin-

eation of SSMZ; (2) compare the performance of hyperspectral derivatives and multi-

spectral VIs; and (3) determine the optimal VIs, segmentation scale and period of growing

season for SSMZ delineation.
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Materials and methods

Study area

The study area, located on the western side of the southern San Joaquin Valley of Cali-

fornia, USA, is well known as a top producer of cotton (Gossypium sp.), garlic (Allium

sativum L.), tomato (Lycopersicon esculentum Mill.), almonds (Prunus dulcis), pistachio

(Pistacia vera L.) and alfalfa hay (Medicago sativa L.), as well as many grain and other

crops. The site was a NASA/USDA Ag20/20 Demonstration Precision Agriculture

research site, located near the city of Lemoore in Kings County (Zarco-Tejada et al. 2005),

(Fig. 1a). An upland Alcala cotton (Gossypium hirsutum) field located at (W119.941�,
N36.218�), approximately 84 ha (800 m by 800 m, Fig. 1b), was selected for study

because of availability of multi-date images, and yield and management records. The field

soils are clay loam over coarse-loamy, mixed (calcareous), thermic Typic Torriorthents

and fine, montmorillonitic, thermic Typic Natragrids. The soils are very deep, well-drained

to moderately well-drained with regions of very slow and moderately slow permeability

effecting localized areas with saline and saline-sodic surface due to poor drainage and high

water table (USDA-NRCS 1978).

Hyperspectral airborne acquisitions

Twelve images were acquired with the Airborne Visible Near InfraRed (AVNIR) hyper-

spectral sensor (OKSI, Inc. Torrance, CA, USA) during the USDA-NRCS 1978 growing

season; dates and corresponding days after planting (DAP) are listed in Table 1. The sensor

has 12-bit digitization over a spectral range of 430–1012 nm with 60 bands of a 9.7 nm full

width half maximum slit. The study images were acquired at 1500 m above ground level

for a nominal 1 m ground spatial distance. Images were pre-processed with atmospheric

and geo-position calibration as described in Zarco-Tejada et al. (2005).

a b c

Red:  Band_19
Green: Band_37
Blue:  Band_48

High: 33634.6
Low: 22.5

Cotton yield (kg/ha)AVNIR image on 20010705

Fig. 1 The a approximate location of the study area in California, USA, b 5 July 2001 AVNIR image as a
Color Infrared composite (bands at 833, 668, 552 nm), and c cotton harvester yield map of the study field
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Cotton yield and management data collection

Yield data were collected using a cotton yield monitor on-board the harvester with yield

accuracy estimated from 95 to 98% for pixels of approximately 4.5 m by 4.5 m (Zarco-

Tejada et al. 2005). The harvester map in Fig. 1c reveals the spatial variability of yield. In

addition to yield data, the grower provided detailed information on farming practices,

including fertilizer and irrigation schedules. Fertilizer recommendations were based on soil

and petiole sampling, and a single fertilizer rate was applied to the entire field (Zarco-

Tejada et al. 2005). Shortly after the initial cotyledons formed (approximately DAP 66),

the first irrigation was applied by sprinkler. Furrow irrigation was used to minimize water

stress, with repeat irrigation every 2–3 weeks depending on the outcomes of frequently

monitored leaf water potential. The sprinkler irrigation was applied only once near the

beginning of the growing season on 20 June, and the last furrow irrigation was 18 August.

After the last irrigation, the plants were allowed to dry before the September application of

harvest-aid chemicals (leaf defoliant and desiccant) for the 21 October 2001 harvest

(Zarco-Tejada et al. 2005).

VI calculations

Zarco-Tejada et al. (2005) evaluated 34 spectral VIs, including indices related to structure

(10), chlorophyll (7), water (3), red edge fitting parameters (5) and combination indices (9)

by calculating the correlation coefficients (r) between VI values and yield data within each

pixel for 12 image dates. Their results demonstrated that the structural indices related to

LAI (e.g. Normalized Difference Vegetation Index (NDVI; (Rouse and Deering 1973),

Optimized Soil-Adjusted Vegetation Index (OSAVI; (Rondeaux et al. 1996), Renormal-

ized Difference Vegetation Index (Roujean and Breon 1995) and Modified Triangular

Vegetation Index (Haboudane et al. 2004)) were more strongly correlated to yield than the

other indices. For this study, NDVI and OSAVI were chosen; NDVI because it is the most

widely used vegetation index, and OSAVI for the ability to evenly distribute soil residual

error across the entire range of crop fractional coverage levels (Steven 1998). In addition,

this study evaluated the first and second derivatives (q0, q00) calculated from the pixel

spectra.

As most remote sensing images are multispectral, to make the study result generally

applicable, multispectral indices (NDVI and OSAVI) were calculated from reflectance at

narrow bands of 668 and 833 nm (Eqs. 1, 2) using Band-Math in ENVI 4.8 (EXELIS,

McLean, VA, USA), as these bands are close to the center of Landsat TM/ETM bands 3

and 4. The hyperspectral indices (q0 and q00) were calculated over all 60 bands with an IDL

program (Gorodetzky 2002), as there are dozens of q0 and q00 over all the bands, the

correlation between yield and q0, q00 were calculated to determine the most significant q0

and q00, then q0 and q00 at 717 nm were used for SSMZ delineation.

Table 1 Dates and days after planting (DAP) of acquired airborne hyperspectral images

Date June July August September October

20 5 11 25 31 8 21 28 5 27 11 17

DAP 66 81 87 101 107 115 128 135 143 165 179 185
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NDVI ¼ ðq833 � q668Þ=ðq833 þ q668Þ ð1Þ

OSAVI = (1 + 0:16Þ � ðq833 � q668Þ=ðq833 þ q668þ0:16Þ ð2Þ

1st Derivativek ¼ ðqkþ1 � qk�1Þ=2Dk ð3Þ

2nd Derivativek ¼ ðq0kþ1 � q0k�1Þ=2Dk ð4Þ

where, q is reflectance value and k is the wavelength of hyperspectral band.

Principles of OO segmentation

Farming practices and environmental studies are often conducted not on individual pixels,

but on defined zones, such as SSMZs with relatively homogeneous crop growth and soil

conditions. These real objects are derived statistically by clustering individual pixels into

uniform regions (objects) within images and yield maps (Fig. 1b, c) using a multi-spatial

resolution segmentation algorithm developed by Tian and Chen (2007) and Baatz et al.

(2004). The size of object aggregation is controlled by the scale, which ‘‘describes the

magnitude or the level of aggregation (and abstraction) on which a certain phenomenon

can be described’’ (Baatz et al. 2004; Benz et al. 2004). Larger scale delineated larger real

objects. This algorithm minimizes the heterogeneity among image objects, weighted by

their size and shape, during the aggregation process. The iterative process starts with single

pixels and merges them with surrounding single pixels into homogeneous objects. Suc-

ceeding iterations combine ever-increasing numbers of similar pixels into existing objects.

Merges are performed in a pairwise manner. For each possible merge of two adjacent

objects, the heterogeneity change is quantitatively compared with the overall change in

heterogeneity (Dhoverall, defined in Eq. 5). A possible merge is fulfilled if the change in

heterogeneity is less than the specified threshold (Tian and Chen 2007). Hence, larger

threshold values allow for more pixel merges, and lead to larger objects.

For this SSMZ classification, the algorithm described by Baatz et al. (2004) and Benz

et al. (2004) was adopted to calculate the heterogeneity and shape changes after merging

spectral values among pixels either within a single VI image or time series of VI images.

For a possible merge of any pair of adjacent SSMZs, an overall heterogeneity change was

calculated with Eq. (5):

Dhoverall ¼ ð1�WshapeÞDhVI þWshapeDhshape ð5Þ

where Wshape is an assigned weight of importance ranging from 0 to 1. DhVI and Dhshape
measure the heterogeneity changes of VI and shape, respectively, and are defined as

follows:

DhVI ¼
XN

i¼1

Wi nMerger
Merge
i � ðnSSMZ1r

SSMZ1
i þnSSMZ2r

SSMZ2
i

� �� �
ð6Þ

Dhshape ¼ WcmpctDhcmpct þ ð1�WcmpctÞDhsmooth ð7Þ

where N denotes the number of image VI layers, Wi represents the weight assigned to the

ith VI layer and n denotes the number of pixels belonging to the potential Merge and

existing SSMZ1 and SSMZ2 objects. The terms rSSMZ1
i , rSSMZ2

i and rMerge
i represent

respective standard deviations within VI values from pixels existing and potentially

merged (Eq. 6).
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Baatz et al. (2004) and Benz et al. (2004) also defined the measures Dhcmpct and

Dhsmooth, which are obtained in a comparative manner illustrated by Eqs. (8) and (9).

Dhcmpct¼nMerge

lMergeffiffiffiffiffiffiffiffiffiffiffiffi
nMerge

p � nSSMZ1

lSSMZ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nSSMZ1

p þ nSSMZ2

lSSMZ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nSSMZ2

p
� �

ð8Þ

Dhsmooth¼nMerge

lMergeffiffiffiffiffiffiffiffiffiffiffiffi
nMerge

p � nSSMZ1

lSSMZ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nSSMZ1

p þ nSSMZ2

lSSMZ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nSSMZ2

p
� �

ð9Þ

where lSSMZ1, lSSMZ2 and lMerge represent perimeter of the potential Merge and existing

SSMZ1 and SSMZ2 objects. bSSMZ1, bSSMZ2 and bMerge represent perimeter of the potential

Merge and existing SSMZ1 and SSMZ2 objects’ bounding box.

The protocols described above ensure a steady and unique segmentation result given a

certain set of the parameters (scale,Wshape andWcmpct) for an image (Tian and Chen 2007).

Equation (5) through (9) govern the local computation and decision-making for all the

possible pairwise merges. An example of multi-spatial resolution segmentation for SSMZs

is shown in Fig. 2.

SSMZ segmentation

Essential parameters, including input VI layers, scale, Wshape and Wcmpct, were used to

derive the ideal SSMZ segmentation for farm practice efficiency. This study used the

multi-spatial resolution segmentation algorithm embedded in the OO software eCognition

(Trimble Geospatial Imaging, Sunnyvale, CA, USA). After transforming each AVNIR

image to VI and derivative images, the images were stacked into individual VI images as

bands in date sequence. When the multi-spatial resolution segmentation algorithm was

conducted on time series images, multi-temporal information was also taken into account

for SSMZ delineation. The optimal input VI and scale were the two key parameters

determined as being important for minimizing heterogeneity and maximizing the

Scale at 50 (SSMZ1 
& SSMZ2 in red 
dashed line) 

Single VI or VIs 
of the season---
Pixels as 
objects 

Scale at 70 (SSMZMerge
in solid black line 
from SSMZ1 and 
SSMZ2) 

…… …… 

Fig. 2 Multi-spatial resolution
segmentation for SSMZs with
vegetation indices from
hyperspectral images
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compactness of SSMZ delineation. The SSMZ delineation and evaluation flowchart is

shown in Fig. 3.

Methods to determine optimal VI

In determining the optimum input VI, each VI sequence image was segmented using a

range of scales to create the same number of SSMZ objects for each and comparing the

resulting zone maps. The names SSMZNDVI, SSMZOSAVI, SSMZ1ST_DERIV and

SSMZ2nd_DERIV are the resulting segmented images using NDVI, OSAVI, q0 and q00 image

sequence for the entire season, respectively.

Methods to determine optimal scale

To evaluate the optimal scale, 12 first derivative input layers and a range of scales from 50

to 200 were used to segment the yield and VI images into various numbers and areas for

SSMZs.

Methods to determine optimal date or accumulated dates

When the multi-spatial resolution segmentation algorithm was conducted on time series

images, multi-temporal information were also taken into account for SSMZ delineation. To

determine whether a single date or a portion of the season (cumulative VI values over a

range of image dates) was most appropriate for delineating SSMZs, whether single or

accumulated index values through sequential periods in the growing season, such as before

boll development, would improve the correlation of VIs to yield was evaluated. VI image

sequences of various durations were segmented, each correlation was calculated between

yield and accumulations of VI values through an increasing number of dates from one to 12

dates (20 June–17 October). For example, NDVI on July 11, q0 on June 20 and

Input VI layers 
(Spectral) 

Whole/part season Whole season 
1ST Deriv 

Parameters 
(Sp, Wshape , and Wcmpct ) 

See Table 2 Scale from 50 to 200

Segmented 
SSMZs 

Same polygon No.: SSMZNDVI; SSMZOSAVI; SSMZ1ST_DERIV; 
SSMZ2nd_DERIVSSMZNDVI0711;  SSMZ 1st_0620; SSMZNDVI_1~4

SSMZ1ST_DERIV at 
different scales 

Validation      The correlation coefficients between yield and VI, polygon No. and VI STD 

Optimal  
Results Optimal VI, Stage Optimal 

NDVI OSAVI 1ST Deriv 2nd deriv 

Fig. 3 SSMZ delineation vegetation indices from hyperspectral images and evaluation flowchart
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accumulated NDVIs of the first four stages were used to segment SSMZs. These were

named as SSMZNDVI0711, SSMZ1st_0620 and SSMZNDVI_1*4, respectively.

Table 2 shows the parameters for site-specific management zones segmented with

different methods listed above.

Quantitative criteria for SSMZ validation

Although image segmentation is a very important step, there are no established quantitative

criteria to determine the best parameters for segmentation. Most studies have employed a

qualitative visual inspection method (Chen et al. 2006). As quantitative criteria for this

study, mean and standard deviation (STD) of VI were used as indicators of the relationship

between the uniformity of crop growth and yield within each SSMZ. The correlation

coefficients between mean yield and mean of VI within SSMZs (rVI_yield), number of

SSMZ polygons, standard deviation (STD) of VI and root mean square error (RMSE) of

yield predicted by VI were calculated to determine the optimal VI, period within crop

growth, and scale. Statistical tests were conducted in SPSS (IBM Inc., Chicago, IL, USA).

Results and analysis

Spatial variability in cotton growth

The variation of early cotton growth is visible in a color infrared (CIR) image (Fig. 1b) as

tones of red and corresponding variation in NDVI values for 5 July 2001 image. This

image is early in the season when substantial portions of the field were still bare soil. As

determined from grower records, furrow irrigation in the field had already begun, and

progress across the field can be seen in lower reflectance in areas of darker soil on the west

side of the field (left side of the CIR image). Also visible is the pattern of several crop rows

Table 2 Parameters for site specific management zones segmented using different VIs vegetation indices
derived from hyperspectral images

Stage Scale Shape
weight

Compactness Polygon
number

RVI_yield RMSE

SSMZNDVI Whole
season

3.39 0.0001 0.5 243 0.850 298.760

SSMZOSAVI Whole
season

3.63 0.0001 0.5 243 0.850 300.226

SSMZ1ST_DERIV Whole
season

107 0.1 0.5 243 0.861 290.043

SSMZ2nd_DERIV Whole
season

65 0.1 0.5 243 0.690 382.896

SSMZNDVI0711 July 11 4.51 0.002 0.5 243 0.872 289.642

SSMZ1st_0620 June 20 105 0.0001 0.5 243 0.852 298.428

SSMZNDVI_1*4 First 4 dates 4.02 0.001 0.5 243 0.876 273.713

RVI_yield is the correlation coefficients between the mean yield and mean of VI within SSMZs. All RVI_yield

values are significant at the 0.01 level (2-tailed). NDVI, OSAVI, 1ST_DERIV AND 2nd_DERIV are
multispectral and hyperspectral indices
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in a north–south direction which had greater plant growth due to an earlier sprinkler

irrigation application. This higher growth rate persisted through the growing season, and

the overall spatial pattern seen in the yield map (Fig. 1c) is similar to vegetation and soil

distributions (Fig. 1b). Cotton spectra were extracted from various pixels within the 11

July AVNIR image (Fig. 4) to represent different growth conditions based on variation in

NDVI values(Fig. 5), and both figures show significant spatial and spectral heterogeneity

for potential SSMZs. S1 in Fig. 4 shows the spectral curve of pixels with the lowest cotton

vegetation cover, which is cyan in Fig. 5, while S6 shows that of pixels with the highest

cotton cover, which is red in Fig. 5; there is increasing cotton vegetation cover from S1 to

S6.

Four bands for VI construction, namely 668, 716, 736 and 833 nm, are marked on

Fig. 4. The first and second derivative values were derived at band 726 nm by using

reflectance values at 716 and 736 nm, and found to be strongly correlated with cotton

yield. Note in Fig. 4 that the 726 nm position was slightly greater than the inflection point

along the red edge and corresponds to earlier findings regarding plant reflectance.

SSMZ segmentation results

The scale (W), shape weight (Wshape) and compactness weight (Wcompt) parameters used to

select the most effective VI are shown in Table 2. SSMZs segmented from NDVI

(SSMZ_NDVI) and first derivative (SSMZ_1ST DERIV) images at scale 107 are portrayed in

Fig. 5 with the 11 July 2001 AVNIR image as the background. At this scale, SSMZ_NDVI
and SSMZ_1ST DERIV separate into 243 polygons. The boundary of each SSMZ follows the

spatial variation within cotton CIR composition, and appears to delineate areas of similar,

uniform image color within each SSMZ object. In Fig. 5, SSMZ1ST_DERIV describes more

detail in spatial variation compared to SSMZNDVI, and appears to be more easily influenced

Fig. 4 Spectra (S1, S2, etc.) for various amounts of cotton cover densities in pixels extracted from July 11,
2001 AVNIR imagery
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by canopy variation. The objects also appear to follow soil and irrigation spatial patterns.

For the same scale, SSMZ objects from different VIs have similar spatial patterns.

Optimal VI for SSMZ delineation

To determine the optimal VI for SSMZ delineation, image maps for each VI and image

date throughout the season were segmented into SSMZs with the same number of objects

in a sequence of eight scale values. Results for VIs NDVI (SSMZNDVI), OSAVI

(SSMZOSAVI), and first and second derivatives (SSMZ1ST_DERIV and SSMZ2nd_DERIV) are

shown in Table 2 with associated number of SSMZ objects, mean yield standard deviation

values within the SSMZs, Pearson’s correlation coefficient for VI to yield values (rVI_yield)

and RMSE of yield predicted by VI. As larger correlation coefficients match to smaller

RMSE values for all VI SSMZ results, only correlation coefficient is discussed. The

correlation coefficients between mean cotton yield and VI within SSMZ objects on each

Red:  Band_19
Green: Band_37
Blue:  Band_48

Fig. 5 SSMZs segmented with NDVI and 1st derivative (scale 107) overlaid on an AVNIR image (July 11,
2001) with color composite of band centers at 552, 668, and 833 nm

Fig. 6 Correlation coefficients
between mean cotton yield and
VIs within SSMZ objects derived
from time-series vegetation
indices [All correlation
coefficients are significant at the
0.01 level (2-tailed)]
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date are also plotted in Fig. 6 (‘‘NDVI_3.39’’ means that SSMZs were segmented from

NDVI images at the scale of 3.39; other numbers in Fig. 6 legend are also scale values).

All correlation coefficients shown in Table 2 and Fig. 6 are significant at the 0.01 level (2-

tailed), except for the last three dates after DAP 143 in Fig. 6. (Zarco-Tejada et al. 2005)

listed the correlation strength varied during the cotton growing season. All results from VI

segmenting show strong correlations between mean cotton yield and VIs before DAP 165

(27 September) and irrigation cut off. The strength of correlation between yield and VIs

within SSMZs increases with increasing cotton growth beginning DAP 66 (20 June) to

maximum correlation coefficients for DAP 87(11 July image) with NDVI and OSAVI.

While NDVI, OSAVI and first derivative indices remained well correlated during this

period, the correlation of the second derivative is less significant. (Zarco-Tejada et al.

2005) reported a similar trend in correlations for pixel based analysis. Results showed that

at the beginning of the season, first derivatives and NDVI and OSAVI, while remaining

asymptotic to LAI, were better for SSMZ delineation. NDVI and OSAVI had the most

significant correlation with cotton yield on DAP 87 (11 July), and the first derivative was

more consistent during the mid-growing season from DAP 101 (July 25) to DAP 135 (Aug.

28), may be considered better for periods with high crop biomass. Although too late for

altering management practices during senescence, NDVI and OSAVI remained signifi-

cantly correlated to yield, and a higher correlation coefficient than the poor performance of

first and second derivative indices. These results underscore that selecting the optimal VI

for a given scale of SSMZ delineation may depend on the period within the cotton growing

season.

Optimal stage for SSMZ delineation

The specific image date NDVI, OSAVI, and first derivative indices values with the best

correlation strength to yield were segmented into SSMZs. Some example data, including

correlation to yield, as well as the input segmentation parameters for these are shown in

Table 2 for NDVI on DAP 87(11 July; SSMZNDVI0711) and first derivative on DAP 66 (20

June; SSMZfirst_0620). The correlation coefficients to yield among SSMZs between seg-

mentation using SSMZNDVI0711 and SSMZ1st_0620 are 0.87 and 0.85, respectively. This

finding indicates different DAPs were optimal for SSMZ delineation, depending on VI,

although both of these indices were optimum early in the growing season. This information

may be early enough for a grower to modify irrigation and other practices.

Accumulated VI through sequential periods for SSMZ delineation

In respect to plant growth, the best correlation coefficients of accumulated VI values for

NDVI and OSAVI occurred with the fourth starting date accumulation of DAP from 66

through 101 (image date 20 June to 25 July). This accumulated NDVI correlation coef-

ficient (r = 0.88) was similar to the best single date NDVI correlation coefficient

(r = 0.87) from DAP 87 (11 July) in the four images accumulated. The accumulated and

single date OSAVI correlation coefficients were similar to those of NDVI. Similar cor-

relation to yield for the same period were achieved using the accumulation of first

derivative images (r = 0.87), and nearly the same correlation for the best single image first

derivative correlation for the season (r = 0.86).
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Optimal scale for SSMZ delineation

While the scale is likely to be set by grower management precision requirements, the

interaction of SSMZ delineation scale and VIs relationship to yield was evaluated. Using a

range of scales from 50 to 200, first derivative layers for the entire season were delineated

into SSMZ. The influence of SSMZ delineation scale on (i) number of SSMZ objects, (ii)

correlation coefficients between means of VI and yield within objects, and (iii) mean STD

of yield recorded within delineated SSMZ objects is shown in Fig. 7. Note that beyond the

mid-point towards the scale of 200, the decline in the number of objects slows, measured

yield STD slightly flattens and correlation coefficient values improve only slightly. These

curves indicate a median point between large easily managed objects and increased

resource efficiency in site-specific farming applications. As Fig. 7 suggests, an optimal

scale for this field SSMZ delineation when using a first derivative index was approximately

107 at the inflection points (points of diminishing returns) for the three criteria, and created

approximately 240 SSMZ objects. While all SSMZs across these scales described the

spatial variation of crop growth well with correlation coefficients above 0.77, fewer and

larger objects may be better for site specific application strategies.

Discussion

The physico-chemical properties of soil and crops demonstrate considerable spatial vari-

ability in heterogeneity, which cannot be described solely on the basis of individual

imagery pixels. Precision agriculture and site-specific farming are also not conducted at the

pixel level, so OO segmentation with single or a sequence of VI images as input layers

allowed the determination and evaluation of SSMZ delineation, taking relatively uniform

crop growth and stress areas as objects. This approach could improve the performance of

precision agriculture and site-specific farming practices.

Since the spectral, spatial and temporal information all contribute to the sequence of

hyperspectral images, the OO SSMZ delineation method may be less sensitive to noise

introduced from multi-resource data. There were errors in the yield map because of the low

spatial resolution of GPS receivers and yield monitors on machinery, which can be seen

from the abnormalities along some columns in the yield map (Fig. 1c). The geometric and

Fig. 7 Number of SSMZ
polygons and standard deviation
of yield, and correlation
coefficient between yield and
accumulated 1st derivative
[correlation is significant at the
0.01 level (2-tailed)]
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atmospheric correction process for airborne images also inevitably resulted in errors

(shown in Fig. 1b). These errors may have influenced the relationship between VI and

cotton yield. However, since the OO segmentation created SSMZ polygons consisting of

hundreds of pixels, the influence of abnormal data was diminished and the relationship

between VI and yield maintained a strong correlation. Similarly, high correlation with

various sequences of VI and derivative images indicates less sensitivity to timing. An OO

map used to create SSMZ during early and mid-season shows greater strength, rather than

later in the season. However, for this set of imagery and yield, cumulative VI values for

part or entire seasons may only provide redundant information given the resulting corre-

lation values in NDVI, OSAVI and first derivative from a single early date.

Mean NDVI and OSAVI values within SSMZs were highly correlated to yield, indi-

cating that multispectral imagery may also be satisfactory for SSMZ segmentation. Since

multi-band satellite imagery is readily available, less expensive, and often more frequent, it

may be worthwhile acquiring data from early in the growing season, even in previous

seasons, to investigate SSMZs with OO segmentation.

Homogeneous SSMZ objects improved the correlation to yield compared to single

pixels. The correlation between VI and yield are greater than the pixel-based correlation

results calculated by Zarco-Tejada et al. (2005). Segmented OO results follow the nature of

SSMZs in that spectrally similar and contiguous pixels are grouped as SSMZs. In addition,

segmentation scale provides greater control in defining the number (and thus size) of

spatial units, which can be tailored to the needs of field management practices. In addition

to spectral information, image objects may be segmented using additional layers of attri-

butes such as micro-climate and geophysical conditions. In this study, only image VI

values were used to define the mean and STD values within SSMZ objects.

Senay et al. (1998) used only one airborne multispectral image at the end of the growing

season (15 September 1994) for delineating site-specific farming zones. Boydell and

McBratney (2002) identified potential within-field management zones from cotton yield

estimates with a single mid-season Landsat TM in each of 11 years. This study showed that

the most significant correlations between yield and single date spectral index values

occurred earlier in the growing season (Fig. 6).

The optimal scale determined in section ‘‘SSMZ segmentation’’ and shown in section

‘‘Accumulated VI through sequential periods for SSMZ delineation’’ is the theoretical

optimal scale based on the number of SSMZ polygons, standard deviation of yield and

correlation coefficient between yield and VI for coincident yield and image pixels. For

practical application, scale should relate to the spatial resolution of site-specific practices

and equipment, such as requirements for larger or smaller management areas due to

differences in sprinkler distances, or widths of fertilizer injector and pesticide spray rigs.

With the relationship of VI to crop growth, SSMZ objects can be segmented at different

scales to generate practical SSMZs for different site-specific application purposes. For a

specified area, larger-scale OO analysis delineates SSMZs of greater size and fewer in

number, which is good for coarse site-specific management practices. Smaller scale OO

analysis generates more detailed SSMZs, which may be better for more accurate site-

specific management implementation, but will require more expensive and precise variable

rate equipment.

OO segmentation partitions the data into SSMZs, not classes. As the zones are con-

tiguous, they are manageable units for agricultural practices. Conversely, as OO seg-

mentation does not produce classes, the zones have to be labelled according to a treatment

class. Similar to the Effective Zone concept introduced by Pedroso et al. (2010), the

application of OO segmentation to an auxiliary variable (multispectral and hyperspectral
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VIs) proved effective with a spatial constraint at partitioning the variance in a correlated

but independent variable of agronomic interest (yield).

SSMZ and RS observations provide accurate input information for agricultural decision

support systems (DSS) and site-specific farming practices. These technologies improve the

capacity and accuracy of DSS and agronomic models by providing accurate input infor-

mation and model validation data. Further investigations are needed with other crops, soils,

climate and years to verify the findings of this study.

Conclusions

In this study, a new SSMZ delineation method based on the Object Oriented (OO) method

was proposed and investigated using image sequences, optimal VIs, scale and image dates.

The SSMZs defined with the OO method at various scales improved the description of the

spatial variation of yield within a cotton field, because much more significant correlations

exist between yield and VIs within SSMZs than that between yield and VIs at pixel level.

The optimal VI for SSMZ delineation was determined at the same scale, and VI rela-

tionship to yield demonstrated a dependence on image acquisition date during the growing

season. Early in the season, when LAI is low, NDVI, OSAVI and first derivative indices

were better for SSMZ delineation; during mid-season, with greater crop biomass, first

derivative indices were better and, at end of the season, during crop senescence stages,

NDVI and OSAVI were better performers. For regions with climate and irrigation patterns

similar to this study area, it appears to be best to choose multispectral and hyperspectral

images from early in the growing season to delineate SSMZs. However, as the results are

based on a specific field and year, more work is needed to establish the generality of these

results.
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