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Abstract
Early prediction of crop production by remote sensing (RS) may help to plan the harvest 
and ensure food security. This study aims to improve the quantification of yield, grain 
protein concentration (GPC), and nitrogen (N) output in winter wheat with RS imagery. 
Ground-truth wheat traits were measured at flowering and harvest in a field experiment 
combining four N and two water levels in central Spain over 2 years. Hyperspectral and 
thermal airborne images coincident with Sentinel-1 and Sentinel-2 were acquired at flow-
ering. A parametric linear model using all hyperspectral normalized difference spectral 
indices (NDSI) and two non-parametric models (artificial neural network and random for-
est) were used to assess their estimation ability combining NDSIs and other RS indicators. 
The feasibility of using freely available multispectral satellite was tested by applying the 
same methodology but using Sentinel-1 and Sentinel-2 bands. Yield estimation obtained 
the highest R2 value, showing that the visible and short-wave infrared region (VSWIR) had 
similar accuracy to the hyperspectral and Sentinel-2 imagery (R2 ≈ 0.84). The SWIR bands 
were important in the GPC estimation with both sensors, whereas N output was better 
estimated using red-edge-based NDSIs, obtaining satisfactory results with the hyperspec-
tral sensor (R2 = 0.74) and with the Sentinel-2 (R2 = 0.62). When including the Sentinel-2 
SWIR index, the NDSI (B11, B3) improved the estimation of N output (R2 = 0.71). Ensem-
ble models based on Sentinel were found to be as reliable as those based on hyperspectral 
imagery, and including SWIR information improved the quantification of N-related traits.

Keywords Machine learning · Random forest · Nitrogen · Yield prediction · Grain quality · 
Short-wave infrared

Introduction

Remote sensing (RS) techniques are a suitable strategy for predicting crop productivity 
from in-season crop status and for adjusting nitrogen (N) and water requirements, which 
are essential elements for plant health that determine crop productivity (Gonzalez-Dugo 
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et al., 2009). An optimal N fertilizer rate at the correct time is crucial for reducing ground-
water contamination due to  NO3–N leaching and for avoiding economic loss for farmers 
(Ottman et al., 2000). Adjusting water delivery to crop demand is important for optimiz-
ing water use in a scenario of climate change and for avoiding decreased plant physiologi-
cal functions (Hoogmoed & Sadras, 2018). Because the final harvest depends on the crop 
physiological status at early stages, RS estimation of crop status can be used to predict final 
crop traits in advance (Quemada et  al., 2014). Approaches based on RS offer extensive 
information on the in-season crop status that affects crop productivity, but it is necessary 
to identify the most suitable and affordable sensor as well as the most sensitive spectral 
region in order to optimize crop trait prediction (Prey & Schmidhalter, 2019a).

Spectral vegetation indices (VIs) based on canopy reflectance are commonly used to 
estimate different crop traits depending on the region of the spectrum used (Gabriel et al., 
2017). Photosynthetic pigments such as chlorophyll a and b, or carotenoids, absorb light in 
the visible region of the spectrum (450–680 nm) (Sims & Gamon, 2002) and their content 
depends on crop N status, among other factors (Heitholt et  al., 1991). The region lying 
between the visible and near-infrared (NIR) regions is called the “red-edge” (680–780 nm), 
and the shape and position change according to the chlorophyll content levels, which are 
used as a proxy for crop N status (Cho & Skidmore, 2006); thus, different studies have 
demonstrated the ability of this region to estimate N content (Inoue et al., 2016). Reflec-
tance at longer wavelengths, such as the NIR (780–1100  nm) and short-wave infrared 
(SWIR) (1100–3000 nm) regions that penetrate deeper in leaves, is influenced by internal 
leaf structure and composition, such as plant biochemical content (Serrano et al., 2002). 
Well-watered plants expand intercellular air space in the spongy mesophyll, increasing the 
canopy density and therefore the reflectance in the NIR region (Zhao & Nakano, 2018). 
Water absorption wavelengths located in the SWIR region are commonly used for estimat-
ing water (Quemada & Daughtry, 2016; Quemada et  al., 2018; Sims & Gamon, 2003). 
Plant protein content can be assessed with the SWIR region using the absorption feature of 
N–H bonds (Curran, 1989). Microwave-based indices, such those obtained with the Senti-
nel-1 synthetic aperture radar (SAR), are useful for vegetation monitoring due to their sen-
sitivity to the dielectric and geometrical properties of the canopy, and they were success-
fully applied for the estimation of biomass (Sinha et al., 2015), plant growth dynamics, or 
soil and vegetation water content (Mandal et al., 2020). Solar-induced fluorescence (SIF) 
emission, which is a proxy of photosynthetic capacity, has been widely used to detect plant 
stress during the past few decades (Mohammed et al., 2019). The proportion of the emitted 
light varies with the plant status; therefore, chlorophyll fluorescence can be used for the 
diagnosis of crop N (Camino et al., 2018) or water status (Zarco-Tejada et al., 2012) due to 
the reduced photosynthesis reported under stress conditions. Finally, plant temperature is 
an indicator of water status because plant transpiration decreases under water stress, lead-
ing to an increase in leaf and canopy temperature (Jackson et al., 1981). Because plant and 
soil temperature can be drastically different, the canopy temperature measured with remote 
sensors can be affected by the soil fractional cover (Shivers et al., 2019). For this reason, 
Moran et al. (1994) developed the water deficit index (WDI) to quantify plant water stress 
using land surface temperature and in-situ-collected climate data while accounting for the 
vegetation fractional cover using a spectral VI.

The quasi-continuous spectrum acquired by hyperspectral sensors is more sensitive 
than broader-band multispectral sensors and offers more information that can be useful for 
crop monitoring (Li et al., 2021). However, hyperspectral sensors are less affordable and 
have spatial coverage limitations (Dian et al., 2021). For these reasons, freely accessible 
multispectral satellite images for crop monitoring (Zhao et al., 2019) or yield forecasting 
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(Gómez et  al., 2019) are receiving increasing attention. Moreover, convolution of Senti-
nel-2 bands from ground-truth hyperspectral information confirmed the high accuracy of 
reflectance acquired by satellite imagery and, therefore, the potential for crop trait estima-
tion (Pancorbo et al., 2021a; Prey & Schmidhalter, 2019a).

Using parametric statistical models that combine several RS indicators to estimate crop 
traits is a common practice and has provided reliable results for many crops, including 
wheat (Prey & Schmidhalter, 2019a; Raya-Sereno et al., 2021a; Zhao et al., 2019), maize 
(Leroux et al., 2019; Quemada et al., 2014), or rice (Liu & Sun, 2016). However, the error 
committed in the prediction is still high for many crop traits (Colaço & Bramley, 2018; 
Quemada et al., 2014; Raun et al., 2005), and particularly for those related to crop N sta-
tus and grain quality (Raya-Sereno et al., 2021a; Rodrigues et al., 2018). Non-parametric 
models, such as random forest (RF) (Breiman, 2001) or artificial neural network (ANN) 
(Rumelhart et al., 1986), are expected to improve crop trait prediction thanks to their abil-
ity to find patterns, extract information, and build high-performance predictive models 
from big datasets (Van Klompenburg et al., 2020). Because of this, the number of studies 
that combine RS data with machine learning (ML) techniques to estimate yield is increas-
ing each year (Ma et  al., 2019; Van Klompenburg et  al., 2020). However, more studies 
using ML to estimate N-related traits are needed, particularly grain quality (Aranguren 
et al., 2020; Prey & Schmidhalter, 2019a; Raya-Sereno et al., 2021b).

This study aimed to improve the estimation of winter wheat traits (yield, grain protein 
concentration (GPC), and N output) with remote sensing imagery by evaluating airborne 
hyperspectral and satellite multispectral sensors. The specific objectives were (i) to deter-
mine the best spectral regions for assessing each winter wheat trait, (ii) to quantify the 
improvement in the estimation when combining indices related to different crop biophysi-
cal parameters, and (iii) to analyze the feasibility of using indices derived from the freely 
available Sentinel-1 and -2 to estimate winter wheat traits.

Material and methods

Field experiment

A field experiment with winter wheat (Triticum aestivum L.) was carried out at La Chime-
nea research station (40° 04′ N, 03° 32′ W, 550 m a.s.l.), central Spain, during the 2018 and 
2019 growing seasons. The climate of the area is classified as cold semi-arid (Bsk) accord-
ing to the Köppen classification. The mean annual temperature is 14.2 °C and the rainfall 
is 350 mm. Spring and summer are characterized by low precipitation. However, the 2018 
experimental year was unusually wet (342 mm from 1 November 2017 to 20 July 2018).

Each year, the study site was a different quarter of a field irrigated by a circular pivot 
(220 m radius) that enables an adjustable and uniform water delivery. The winter wheat 
was homogeneously sown in November of the previous year at a seeding rate of 220 seeds 
 ha−1. Soil uniformity and low levels of soil N inorganic content was ensured by estab-
lishing a maize crop (Zea mays L.) before both wheat experiments that did not receive N 
fertilizer. In addition, no organic amendments were applied during the 4 years before the 
experiments. A factorial experiment was established in 32 plots (22 × 22 m in 2018 and 
25 × 25  m in 2019) marked with real-time kinematic (RTK) Global Navigation Satellite 
System (GNSS) observations for both years. The plots were randomly assigned to four N 
levels and two water levels, with four replications (Fig. 1). The N levels were established 
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by applying different amounts of N fertilization (calcium ammonium nitrate) at tillering 
(66%) and at stem elongation (33%). Before the first N application, soil samples were col-
lected to 0.6-m depth at 0.2-m intervals to determine the soil inorganic N content (kg N 
 ha−1) and to adjust the amount of N fertilization accordingly. The soil inorganic N content 
was 36 kg N  ha−1 in 2018 and 57 kg N  ha−1 in 2019. The N fertilizer rates applied to each 
N level were 0, 50, 100, and 150 kg N  ha−1 for N0, N1, N2, and N3, respectively, in 2018 
and 0, 42, 92, and 142 kg N  ha−1 in 2019. Therefore, the four N levels corresponded to N0 
(no N application), N1 (N stress), N2 (recommended N rate), and N3 (overfertilized).

The two water levels were established at the beginning of flowering (growth stage (GS) 
63 for both years) by irrigating half of the plots. The plots receiving this irrigation are 
referred to in the text as “W2” and the others as “W1”. The amount of water delivered 
in the W2 plots of the 2018 experimental year was 25  mm on May 8. An accumulated 
rainfall of 46 mm between May 24 and 29 replenished soil water storage, mitigating crop 
water stress. Two irrigation events were conducted at flowering in 2019 in the W2 plots: on 
May 7 (30 mm) and May 10 (9 mm). More information on the experiment can be found in 
Pancorbo et al. (2021b).

Crop data

The effect of N and water treatments on winter wheat was determined by analyzing two 
samples of aerial biomass per plot at flowering and analyzing the grain at harvest. The 
biomass samples (0.5 × 0.5 m) used in this study were collected 3 and 4 days after the last 
W2 irrigation event in both years: on 11 May 2018 and 13 May 2019 (GS65) (Table 1). To 
measure yield, all plots were harvested on 20 July 2018 and 3 July 2019 with a 1.4-m-wide 
combiner. A 1-m buffer was left at both ends of the plots to avoid edges. Simultaneously, 
a grain sample of each plot was saved for analysis. The biomass and grain samples were 
dried at 65  °C for 48  h and weighed to determine the moisture content and the above-
ground biomass (kg dry matter  ha−1) and yield (kg grain  ha−1). Subsamples of each bio-
mass and grain samples were analyzed in the laboratory to determine the N concentration 
(%N) by using the Dumas combustion method (LECO FP-428 analyzer, St. Joseph, MI, 
USA). The grain protein concentration (GPC; %) of each plot was calculated from the grain 
N concentration, and the N output (kg N  ha−1) was calculated by multiplying yield by grain 
N concentration.

Fig. 1  Green normalized differ-
ence vegetation index (GNDVI) 
calculated over the study site 
with the airborne hyperspectral 
imager at flowering in 2019. The 
32 plots of each year separated 
by N rates (N0, N1, N2, N3) and 
water levels (W1, W2) are shown
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Airborne campaigns

Two hyperspectral sensors covering the visible–NIR and a portion of the NIR–SWIR region, 
together with a thermal sensor, were installed in tandem on a Cessna aircraft that flew 300 m 
above the experiment site at 75 km  h−1 ground speed, heading on the solar plane at 11 GMT 
in both years. The two flights were conducted at midday to minimize the effects produced by 
different sun illumination angles. Airborne campaigns were operated by the Laboratory for 
Research Methods in Quantitative Remote Sensing of the Consejo Superior de Investigaciones 
Científicas (QuantaLab, IAS-CSIC, Spain) as close as possible to biomass collection ensuring 
cloud-free sky conditions. The flights took place 4 and 6 days after the W2 irrigation event (15 
May 2018, 16 May 2019; GS65 both years) (Table 1).

The hyperspectral imager covering the VNIR region (Hyperspec VNIR model, Headwall 
Photonics, Fitchburg, MA, USA) captured the reflected light between 400 and 850 nm with 
a spectral resolution of 6.5 nm full-width at half maximum (FWHM) and 50° field of view 
(FOV) that yielded a spatial resolution of 0.2 m. Reflectance in the SWIR region was obtained 
with a hyperspectral sensor (NIR-100 model, Headwall Photonics, Fitchburg, MA, USA) 
from 950 to 1750 nm at 6.05 nm FWHM, with an FOV of 38.6° and 0.6 m spatial resolution. 
The radiometric calibration of the hyperspectral cameras was conducted with an integrating 
sphere (CSTM-USS-2000C LabSphere, North Sutton, NH, USA) using four levels of illumi-
nation and six integration times. The atmospheric correction was made by measuring incom-
ing irradiance with a field spectrometer concurrently with the flights and also simulated by 
the SMARTS model using aerosol optical depth (AOD) and weather data (Gueymard, 2001). 
Smoothing of the spectral data was performed following the Savitzky–Golay method with a 
filter length of 9 interpolated to 1 nm.

The surface temperature was recorded with a thermal sensor (SC655 model, FLIR Sys-
tems, Wilsonville, OR, USA) at a spatial resolution of 0.25 m, 16-bit radiometric resolution, 
focal length of 13.1 mm, and 45 × 33.7° FOV in each flight. Thermal imagery was calibrated 
using ground temperature data collected with a handheld infrared thermometer (LaserSight, 
Optris, Germany).

The data of each plot were extracted from the orthorectified images using the RTK GNSS 
coordinates and leaving a 2-m buffer in each site of the plots to ensure representativeness. 
Average spectra and temperature values were obtained from each plot.

Satellite datasets

The satellite imagery used was the multispectral sensor carried by the Sentinel-2 and the 
synthetic aperture radar (SAR) instrument onboard the Sentinel-1. The Sentinel imagery 

Table 1  Schedule of the data 
acquisition campaigns

Campaign Date Growth stage

2018 2019

Biomass 11/5/18 13/5/19 GS65
Sentinel-1 11/5/18 18/5/19 GS65
Sentinel-2 12/5/18 14/5/19 GS65
Aircraft 15/5/18 16/5/19 GS65
Harvest 20/7/18 03/7/19 GS99
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was downloaded from the European Space Agency (ESA) DataHUB server (ESA, 2022a). 
The Sentinel-2 payload is the multi-spectral instrument (MSI), which is a push-broom sen-
sor with a swath width of 290 km. The MSI provides 13 spectral bands from the visible 
to SWIR regions at different spatial and spectral resolutions (Supplementary Material S. 
1). The products selected were those with the overpass closest to the biomass collection 
campaigns, ensuring cloud-free sky conditions over the experimental site in both years 
(Table 1). The products downloaded were the Sentinel-2 Level 2A, which indicates that 
the atmospheric corrections were automatically made by the payload data ground segment 
(PDGS) with the Sen2Cor procedure using atmospheric constituents derived from in-scene 
spectral bands. Geometric alignment of the imagery was conducted using the airborne 
images as reference.

Because no pure pixels of the Sentinel-2 20-m bands were available for all plots, the 
Sentinel-2 bands were convolved using the reflectance spectra collected with the aircraft. 
To validate the convolved bands, first, the 10-m Sentinel-2 bands were resampled to 20 m, 
which resulted in 59 pixels per year in the study site. For each Sentinel-2 pixel, the average 
spectrum of the airborne imagery was extracted and convolved using the spectral response 
function (ESA, 2022b). The coefficients of the regression line of the linear relationship 
between the Sentinel-2 and the convolved bands were applied to each convolved band to 
increase similarities between the real Sentinel-2 and the convolved bands. The resulting 
bands were used to calculate the Sentinel-2 spectral indices applied in this study. Finally, 
the validation process was performed by analyzing the linear relationship between the 
NDSIs calculated with Sentinel-2 and with the convolved bands (n = 118).

This study tested the performance of combining Sentinel-1 and Sentinel-2 information 
for winter wheat trait estimation. Sentinel-1 provides cross-orbit images of dual-polarized 
(VV-VH) backscatter in the C band (central frequency of 5.405 GHz) in the ascending and 
descending orbits. In this study, the Sentinel-1 ground range detected (GRD)-products 
were downloaded from ESA (2022a). Radiometric correction was applied to obtain the 
co- and cross-polarized backscatter, (σVV

0 and σVH
0 (db)) using the Sentinel Application 

Platform (SNAP) (Mandal et  al., 2020). The modification of the quad-pol radar vegeta-
tion index (RVI) (Kim & Van Zyl, 2009) for dual-pol SAR data was calculated as 4σ0VH/
(σ0VV + σ0VH) (Trudel et al., 2012) and extracted the value for each plot.

Crop trait estimation

Selection of indices as proxy of crop biophysical parameters

The winter wheat trait estimation capacity when using one spectral vegetation index was 
compared against combining different indices with ensemble models. For each trait, the 
indices included in the ensemble models were selected according to their link with the 
traits and with specific crop biophysical parameters, and they were grouped according to 
the sensor required to calculate it. Each group of indices was added one at a time to the 
ensemble models to quantify the potential improvement in the estimation (Fig. 2).

The mean airborne spectrum of each plot was used to construct a contour map for 
each winter wheat trait. The contour maps represent the R2 value from the linear regres-
sion between each trait and each normalized difference spectral index [NDSI (λ1, 
λ2) = (λ1 − λ2)/(λ1 + λ2)] calculated with a combination of all possible hyperspectral bands 
(λ) when λ1 > λ2 and λ ∈ [400, 1750 nm]. From each contour map, the NDSI with the high-
est R2 value was selected and used as benchmark to test the potential improvement when 
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combining several indices. The first sensor tested with the ensemble models was the hyper-
spectral VNIR. For this, a canopy structure-related and a chlorophyll-related NDSI were 
selected from this region. The structural NDSI was selected among those based on an NIR 
and a visible band (Rondeaux et al., 1996). The chlorophyll-related indices were selected 
among the NDSIs based on an NIR and a red-edge band, two bands in the red-edge, or two 
bands in the visible region (Prey & Schmidhalter, 2019b). The links between the selected 
NDSIs with the canopy structure, and chlorophyll content were verified by analyzing their 
linear relationship with aboveground biomass and plant %N, respectively. The second sen-
sor included was a hyperspectral sensor that covers the SWIR region. To this end, an NDSI 
based on one or two SWIR bands was selected and included in the ensemble models. Col-
linearity between the selected NDSIs was avoided by ensuring a Pearson correlation coef-
ficient of ≤ 0.75 when possible. The third analysis tested the performance when a high-
resolution VNIR hyperspectral imager and the radiance information are also available. For 
this purpose, the solar-induced chlorophyll fluorescence (SIF) emission was calculated by 
the Fraunhofer line-depth (FLD) principle using the solar irradiance and the radiance emit-
ted by the canopy in the atmospheric  O2 absorption features at 760.5 nm (Meroni et al., 
2010). The FLD method used the radiance  Lin  (L762 nm) and  Lout  (L750 nm) as well as the 
irradiance  Ein  (E762 nm) and  Eout  (E750 nm) from the irradiance spectra measured at the 
time of the flights. The last sensor included in the analysis was a thermal camera because 
of its capacity to determine the crop water status (Pancorbo et al., 2021b). The water deficit 

Fig. 2  Workflow followed in this study. VNIR refers to a normalized difference spectral index (NDSI) 
based on the 400–1000-nm region. VSWIR indicates an NDSI with at least one band in the 1000–1750-nm 
region. Chl and Stru indicate an NDSI related to chlorophyll content and canopy structure, respectively. 
SIF, WDI, and RVI indicate solar-induced fluorescence, water deficit index, and radar vegetation index, 
respectively. MLR, ANN, and RF refer to the ensemble models multiple linear regression, artificial neural 
network, and random forest. GPC indicates grain protein concentration (%)



 Precision Agriculture

1 3

index (WDI) was calculated based on the vegetation index–temperature trapezoid (VIT) 
using the soil adjusted vegetation index (SAVI; Huete et al., 1988) as a proxy of ground 
cover (Moran et al., 1994).

The estimation capacity using satellite information was tested by applying the method-
ology described earlier but using Sentinel-1 and Sentinel-2 to calculate the indices (Fig. 2). 
The structural, chlorophyll, and SWIR indices used as input variables for estimating wheat 
traits with the airborne hyperspectral sensor were similarly calculated using the clos-
est Sentinel-2 convolved bands. The B8A band was not used because its spectral region 
(855–875  nm) was in the gap between the regions covered by the VNIR (400–850  nm) 
and the SWIR (950–1750 nm) sensors installed on the aircraft. The B11 was used as the 
SWIR band in all SWIR-based indices because the B12 region was not covered by the 
aircraft spectral range (Supplementary Material S. 1). The RVI calculated with Sentinel-1 
was included in the analysis to quantify the potential improvement when using the com-
bination of Sentinel-1 and Sentinel-2 for winter wheat trait estimation. The SIF and the 
WDI cannot be calculated with the Sentinel dataset and, therefore, were not included in the 
Sentinel analysis.

Ensemble models for winter wheat trait estimation

The ensemble models used to quantify the potential improvement in the estimation when 
combining different sensors/indices were (i) multiple linear regression (MLR), (ii) artificial 
neural network (ANN), and (iii) random forest (RF). The tenfold cross-validation resam-
pling technique was used with a random subset of 70% of the plots for training and the 
remaining 30% for testing. The training dataset was used for calibrating and optimizing 
the models. The testing dataset was used to evaluate the model transfer learning ability by 
calculating the coefficient of determination (R2) and the root mean square error (RMSE) 
between the measured traits and the estimated values at each fold.

The performance of the MLR model was evaluated by, firstly, fitting the training dataset 
to the crop trait analyzed. Secondly, the equation of the linear regression was used with the 
testing dataset. Finally, the linear relationship between the predicted and the observed crop 
trait was analyzed.

The ANN model was built using the back-propagation algorithm. This model consists 
of a network composed of one input layer, one or more hidden layers, and one output layer 
connected by neuron-like units. Each connection has a weighting factor. During the train-
ing process, the back-propagation algorithm repeatedly adjusts the weighting factors to 
minimize the mean square error (MSE) between the output and the estimated parameter 
(Rumelhart et  al., 1986). The ANN model was executed using the “neuralnet” package 
implemented in the R software (version 4.0.5; R Core Team, 2021). In this study, the ANN 
was run by setting the number of hidden layers as 2 and the number of neurons in the hid-
den layer equal to the number of input variables.

The RF is an ML model based on multiple decision trees (Breiman, 2001). The RF 
regression was conducted using the “randomForest” R package (Liaw & Wiener, 2002). 
The training dataset was used to optimize the model by selecting the optimal number of 
regression trees (ntree) and the number of variables included at each node (mtry). The 
most suitable value of ntree was calculated by varying it from 50 to 1000 with 50 intervals 
while fixing mtry as default (500). The mtry value selected was optimized by varying mtry 
from 1 to the number of input variables minus 1 with a single interval, while setting ntree 
as the optimized value. For the optimization process, the ntree and mtry variables selected 
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were those that obtained the minimum MSE using the training dataset. The RF model also 
quantified the importance of each input variable in the estimation as the increase in node 
purity (IncNodePurity; Dube et al., 2019). This index measures the increase in MSE when 
permuting the out-of-bag (OOB) portion of the data (Liaw & Wiener, 2002). The most 
important variables have higher IncNodePurity value; therefore, this index was used to 
rank the input variables according to their importance in the estimation.

Results and discussion

Winter wheat traits

Higher levels of N and water led to an increase in biomass and plant %N at the flower-
ing stage, with more noticeable effects in 2018. Biomass showed a correlation with yield 
(R2 = 0.48) and with N output (R2 = 0.53), but not with GPC. On the other hand, plant %N 
was linked to GPC (R2 = 0.69) and to N output (R2 = 0.49), but not to yield.

Yield response to N fertilization was stronger in 2018 than in 2019. All N levels obtained 
more yield in 2018, and the differences between N levels were larger that year (Fig. 3a). 
Water levels did not affect yield for any N level and year (P ≥ 0.05). Yield increased with 
N application following a quadratic plateau model in both years. This fit resulted in sig-
nificant differences between all N levels, except for N2 and N3 in 2018 (P ≤ 0.05). In fact, 
for 2018 the optimal N fertilizer rate was 213.7 kg N  ha−1, indicating that the plateau was 
not reached by the N3 plots (186 kg N  ha−1). By contrast, for 2019, the yield showed dif-
ferences in the control treatment (N0), reaching the plateau with a smaller N fertilization 
dose (127.8 kg N  ha−1). Therefore, this finding showed that N2 (149 kg N  ha−1) and N3 
(199 kg N  ha−1) plots were over-fertilized.

Contrary to yield, GPC was higher in 2019 than in 2018 for all N levels (P ≥ 0.05). 
Significant differences between water levels were only found in the N3 plots of 2018, with 
higher values in W2 (Fig. 3b). Therefore, the GPC of the W1 and W2 levels of 2018 were 
plotted separately, while the two water levels of 2019 were plotted together. The GPC 
increased linearly with N fertilization in 2019, and it fitted a quadratic model in 2018 for 
the two water levels. The different N fertilization rates produced significant differences 
between all N levels in 2018, as well as in 2019, except for the N-stressed plots (N0 and 
N1).

Fig. 3  Winter wheat a yield (kg  ha−1), b grain protein concentration (%), and c N output (kg N  ha−1) 
response curves to N availability (soil mineral + fertilizer) according to year (2018 and 2019). Variables 
were separated by water levels (W1 and W2) when significant differences were observed. Symbols are the 
mean value with standard errors as bars. Lines represent the adjusted model
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The N output was higher in 2018 than in 2019 (Fig. 3c). Nevertheless, this difference 
between years was not found in the N-stressed plots (N0 and N1) (P ≥ 0.05). The effect 
of the N fertilization in N output was stronger in 2018 than in 2019, as the different N 
fertilization rates led to differences in N output between all N levels in 2018, whereas the 
N output of the well-fertilized plots (N2 and N3) was not different in 2019 (P ≥ 0.05). 
Consequently, the N output fitted a quadratic plateau model in 2019, with a maximum of 
114 kg N ha −1 in N output, which was reached with 251 kg of available N per hectare. The 
effect of water levels in N output, as well as in GPC, was not apparent in 2019 and was 
only found in the N3 plots of 2018, with a higher value in W2. Therefore, the two water 
levels were plotted together in 2019 (Fig. 3c).

Spectral differences due to treatments and selection of indices

The effect of the N levels on the reflectance spectra acquired at flowering by the airborne 
sensors was detected on the visible, NIR, and SWIR regions, with the differences between 
N levels being more obvious in 2018 (Fig. 4). Low N levels had higher reflectance in the 
visible region, probably due to a lower photosynthetic pigment absorption, whereas high N 
levels increased reflectance in the NIR in both years. Within the SWIR region, reflectance 
in the 1500–1700-nm range was particularly sensitive in discriminating between N levels. 
This was attributed to the absorption feature of N–H bonds located in this region (Curran, 
1989).

Differences in the spectra between water levels were more evident in 2019 and in the 
N-stressed plots of 2018, which were particularly detectable in the SWIR region (Fig. 4). 
In this region, the plots with less water availability presented higher reflectance. This pat-
tern was also observed in the green and red wavelengths. The reflectance in the NIR region 
increased in the W2 plots of 2019.

The R2 contour maps revealed the importance of using the adequate spectral region for 
an accurate estimation of each winter wheat trait (Fig.  5). Overall, yield was the wheat 
trait best estimated by the NDSIs, yielding a value of R2 > 0.6 with most NDSIs that used 
an NIR or SWIR in combination with a visible band (especially green) or an NIR and 
SWIR band. The highest R2 value (0.85) in all contour maps was obtained when estimating 

Fig. 4  Canopy spectra acquired with the hyperspectral aerial imagery in the two water levels (W1 and W2) 
of N0 and N3 fertilizer treatments at flowering each year
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yield with the NDSIs constructed with different combinations of bands within the red-edge 
and/or NIR regions. On the other hand, the best GPC estimation (R2 = 0.72) was obtained 
with NDSIs based on reflectance at SWIR between 1600 and 1750 nm and visible region 
(green), followed by specific wavelengths in the NDSI (NIR, red-edge). The best N output 
estimation (R2 = 0.73) was achieved by NDSIs based on bands in the NIR region (around 
790  nm) and red-edge (around 750  nm), or two bands within the red-edge. Despite the 
similar maximum R2 value obtained in estimating GPC and N output, N output showed a 
more robust correlation with other NDSIs, for example, most of the NDSIs (visible or red-
edge, NIR or SWIR) presented a value of R2 > 0.5 with N output, while most of the NDSIs 
presented a value of R2 < 0.3 with GPC.

The contour maps showed that NDSI (1650 nm, 550 nm) was highly correlated with 
GPC, while the yield estimation was more accurate when the 550-nm band was changed 
by shorter or longer wavelengths (Fig.  5). Overall, the contour map calculated for GPC 
showed similar patterns to the contour map calculated for plant %N, and the yield contour 
map was similar to the biomass contour map (Fig. 5).

The VIs used as structural, chlorophyll, and SWIR input variables in the ensemble 
models were selected according to their performance in the R2 contour maps (Fig.  5) 
and the lack of correlation between them. To estimate yield, the VI selected as a proxy 
of chlorophyll content was NDSI (799  nm, 755  nm), and the SWIR-based index was 
NDSI (1106  nm, 1066  nm). They were selected because of their linear correlation 
with yield (R2 = 0.76 in both indices) and because there was no collinearity between 
them (Pearson coefficient ≤ 0.75). Due to the sensitivity of the red-edge reflectance to 

Fig. 5  Contour maps representing the R2 from the linear relationship of wheat traits (yield (kg  ha−1), grain 
protein concentration (%), and N output (kg N  ha−1)) and crop parameters at flowering (biomass and plant 
%N) against all possible normalized difference spectral indices (NDSIs) calculated with the hyperspectral 
airborne imagery acquired at flowering each year. The regions not covered by the sensors (850–950 nm) 
and the water absorption wavelengths are in white
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chlorophyll content (Inoue et al., 2016), different studies reported the good performance 
of NDSI (NIR, red-edge) for estimating chlorophyll (Fitzgerald et  al., 2006; Zillman 
et al., 2015) or N content (Inoue et al., 2012; Li et al., 2013). They are crucial compo-
nent involved in photosynthesis, and therefore their content affects biomass production 
(Fig. 5), and final yield (Quemada & Gabriel, 2016). This explains why this study, in 
agreement with previous research (Adak et al., 2021; Raya-Sereno et al., 2021b; Wang 
et  al., 2019), obtained a good correlation between NDSI (NIR, red-edge) and wheat 
yield. The correlation between NDSI (1106 nm, 1066 nm) and yield can be explained 
because nearby wavelengths are the absorption feature of the structural biochemical 
components of plants, such as lignin (1120  nm), and the N–H absorption wavelength 
located at 1020 nm (Curran, 1989). Cell structure is affected by the nutritional and water 
status, which has an effect on plant growth, and therefore these wavelengths are related 
to yield (Thenkabail et  al., 2013). We did not find any structural index that presented 
no collinearity with the chlorophyll and SWIR selected indices. This study agrees with 
previously developed contour maps showing that NDSI (NIR, green) was the most suit-
able structural index for biomass (Hansen & Schjoerring, 2003) and yield estimation 
(Raya-Sereno et al., 2021b). For these reasons, the structural index used in the ensemble 
models for estimating yield was NDSI (800 nm, 550 nm), which corresponds to GNDVI 
(Gitelson et al., 1996). The chlorophyll strongly absorbs light in the visible region, espe-
cially in the blue and red bands (Sims & Gamon., 2002), and thus GNDVI has a lower 
value than NDVI (NDSI (NIR, red)) and tends to saturate later (Rodrigues et al., 2018).

To estimate GPC, the proxy of chlorophyll content was NDSI (795  nm, 750  nm) 
because it has one of the highest accuracies in GPC estimation (R2 = 0.70; Fig. 5). This 
NDSI belongs to the small region of the GPC contour map based on NIR and red-edge 
with a high R2 value. A relationship between NDSI (NIR, red-edge) and GPC was also 
reported by Raya-Sereno et  al. (2021b)  and Fu et  al. (2022). This NDSI presented a 
Pearson coefficient of ≤ 0.75 with NDSI (1650 nm, 545 nm), which is one of the SWIR 
indices most closely correlated with GPC (R2 = 0.64); therefore, it was selected as the 
SWIR-based NDSI used to estimate GPC. The performance of the SWIR index for GPC 
estimation relies on the protein feature band near this region (Curran, 1989). Similarly, 
Söderström et  al. (2010) successfully used the simple ratio of SWIR (1550–1750  nm 
range) and green reflectance for GPC estimation in barley, and Zhao et  al. (2005) 
reported the suitability of the same SWIR region for GPC estimation in wheat. All 
structural NDSIs presented a weak correlation with GPC (R2 < 0.1), but the correlation 
with NDSI (NIR, green) was slightly higher (P < 0.05). For this reason, due to the cor-
relation with biomass at flowering and to the lack of collinearity with the other GPC 
estimators, GNDVI was selected as the proxy of plant structure to estimate GPC with 
the ensemble models.

One of the NDSIs that exhibited the best correlation with N output was NDSI 
(778  nm, 752  nm) (R2 = 0.74); therefore, it was used as the chlorophyll index in the 
N output estimation models. Likewise, Prey and Schmidhalter (2019b) used NDSI 
(770 nm, 750 nm) for N output estimation. The suitability of this NDSI to assess winter 
wheat N uptake at the flowering stage was highlighted in the contour maps developed 
by Li et al. (2013). This NDSI presented no collinearity with an SWIR-based NDSI that 
was correlated with N output: NDSI (1650  nm, 520  nm) (R2 = 0.62). The chlorophyll 
and the SWIR VIs selected for estimating N output were correlated with all structural 
NDSI. The GNDVI was selected as the structural index for estimating N output with the 
ensemble models because it presented a value of R2 = 0.65 with N output and was cor-
related with plant biomass at flowering.
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Assessment of wheat trait estimation with hyperspectral airborne imagery using 
ensemble models

The performance of estimating wheat traits with a single NDSI was improved when com-
bining different indices with the ensemble models (Fig. 6). In this study, the three ensemble 
models performed similarly when using three or more indices to estimate any of the wheat 
traits. However, significant differences between the accuracy of the models were observed 
when using only two indices, which resulted in a lower accuracy of the RF model. Overall, 
the RF showed an improvement in estimation when more indices were used. The good per-
formance of the MLR occurred because a linear regression model (contour maps) was used 
to select the explanatory variables (NDSIs) and, therefore, a linear relationship between the 
response and the explanatory variables exists (Sellam & Poovammal, 2016).

Yield was the wheat trait best estimated when using ensemble models (Fig.  6), as 
observed in the R2 contour maps (Fig. 5). The most accurate yield estimation was obtained 
when combining the structural (GNDVI), chlorophyll (NDSI (799  nm, 755  nm)) and 
SWIR (NDSI (1106 nm, 1066 nm)) indices with ANN (R2 = 0.86; RMSE = 493.17 kg  ha−1. 

Fig. 6  Coefficient of determination (R2) and root mean square error (RMSE) obtained when using airborne 
sensors to estimate wheat traits: a yield (kg  ha−1), b grain protein concentration, and c N output with lin-
ear regression (LR), multiple linear regression (MLR), artificial neural network (ANN), and random for-
est (RF). Indices used are on the x axis: spectral vegetation indices based on visible-near infrared regions 
related to chlorophyll content (chl) and plant structure (stru), a vegetation index that includes a band within 
the SWIR region (SWIR), solar-induced fluorescence (SIF) and water deficit index (WDI). Different white 
letters indicate significant differences (p ≥ 0.05) between ensemble models with the same set of indices. 
Colored letters indicate differences between the same ensemble models using a different set of indices
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Figure 6a). In this case, the most important estimator according to the IncNodePurity was 
the SWIR index. When the SIF was included in the analysis, it obtained the highest or the 
second highest IncNodePurity value (Fig. 7), and was correlated with yield (R2 = 0.73; data 
not shown), but no improvement was achieved when included in the models. When using 
only NDSI (773 nm, 753 nm), which is the best NDSI from the contour maps, to estimate 
yield with tenfold cross-validation, values of R2 = 0.84 and RMSE = 521.18 kg  ha−1 were 
obtained. This result indicates that combining different NDSIs with ANN improved the 
yield estimation.

The maximum R2 value obtained when estimating GPC with the NDSIs or with the 
ensemble models was the lowest among all wheat traits analyzed, indicating that it is the 
most challenging trait to estimate. The most accurate GPC estimation was obtained with 
MLR using the chlorophyll (NDSI (795  nm, 750  nm)), structural (GNDVI), and SWIR 
(NDSI (1650  nm, 545  nm)) indices (R2 = 0.73; RMSE = 0.19%N; Fig.  6b); this was the 
only model that outperformed the tenfold cross-validation results obtained with NDSI 
(1701 nm, 551 nm) (R2 = 0.72; RMSE = 0.20%N). When using only VNIR-based NDSIs, 
the highest R2 value was 0.68 and the lowest RMSE was 0.21%, which indicates that GPC 
estimation is the one that improved the most when including SWIR reflectance. Accord-
ing to the IncNodePurity, the most important indices for GPC estimation were chlorophyll 
and SWIR, which showed important differences with the other indices in IncNodePurity 
value in all cases. No correlation between GPC and the SIF was found, and there was no 
improvement when the SIF was included in the GPC estimation models.

The most accurate estimation of N output was obtained with MLR using the chlorophyll 
(NDSI (778  nm, 752  nm)), structural (GNDVI), and SWIR (NDSI (1650  nm, 520  nm)) 
indices (R2 = 0.74; RMSE = 15.47 kg N   ha−1; Fig. 6c). The IncNodePurity indicated that 
the most important indices in the estimation were chlorophyll and SWIR; however, the dif-
ference with the structural index was smaller than in the GPC estimation. When including 
only VNIR-based VIs in the ensemble models, the best performance was obtained with the 
MLR with values of R2 = 0.72 and RMSE = 16.2 kg N  ha−1. Despite a correlation between 
SIF and N output being found (R2 = 0.27; p < 0.001; data not shown), no improvement in 
the estimation was attained when the SIF was included in the models.

Pancorbo et al. (2021b)  showed in the same study site that the WDI was able to distin-
guish between water levels with minimum effect on the N levels; however, the WDI did not 
enhance any trait estimation despite being correlated with yield (R2 = 0.44; p < 0.001) and 
with N output (R2 = 0.18; p < 0.001), but not with GPC (R2 < 0.1; p > 0.1).

Convolved validation and assessment of wheat trait estimation with Sentinel‑1 
and Sentinel‑2 using ensemble models

High similarities were found between the NDSIs extracted from the Sentinel-2 imagery 
and the NDSIs calculated with the convolved bands (R2 > 0.71, n = 118 pixels; Supplemen-
tary Material S.2). These strong relationships justify using the convolved indices (Table 2) 
to test the estimation capacity of Sentinel-2.

The accuracy was similar when yield was estimated from aircraft imagery or Sentinel-2 
band-derived NDSIs (Figs.  6a and 7a). The best yield estimation when using the Senti-
nel dataset was obtained with the ANN model using the structural (GNDVI), chlorophyll 
(NDSI (B8,B6)), and SWIR (NDSI (B11,B8)) indices (R2 = 0.85; RMSE = 507.08 kg  ha−1; 
Table 2; Fig. 8a). The same model and variables produced the best estimation when indi-
ces were calculated with the hyperspectral airborne imagery, but with a slightly more 
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accurate estimation (R2 = 0.86; RMSE = 493.17  kg   ha−1; Fig.  6a). According to the Inc-
NodePurity, the most important indices to estimate yield with Sentinel were the chlo-
rophyll and the SWIR indices in all cases (Fig.  7). With the aircraft imagery the SWIR 
index also reached the highest IncNodePurity value in most cases. When using only 
the VNIR Sentinel-2 bands, the combination of the structural and chlorophyll indices 

Fig. 7  Importance of the variables according to the increase in node purity (IncNodePurity) when estimat-
ing yield, grain protein concentration, and N output with the airborne hyperspectral and Sentinel imagery. 
Chl and Stru are spectral vegetation indices based on visible-near infrared regions related to chlorophyll 
content and plant structure, respectively. SWIR indicates a vegetation index that includes a band within the 
SWIR region. SIF and WDI stand for solar-induced fluorescence and water deficit index, respectively. S1 
indicates the radar vegetation index calculated with Sentinel-1 images
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(R2 = 0.84; RMSE = 519.67  kg   ha−1) outperformed the index with the highest R2 value 
in the contour maps but calculated with the Sentinel-2 bands (NDSI (B7, B6) (R2 = 0.80; 
RMSE = 582.13 kg  ha−1), highlighting the importance of combining different indices with 
ensemble models.

The best estimation of GPC with the Sentinel dataset was obtained with the MLR model 
using the structural (GNDVI), chlorophyll (NDSI (B8, B6)), and SWIR (NDSI (B11, B3)) 
indices (R2 = 0.69, RMSE = 0.19%N; Table  2; Fig.  8b). The same indices gave the best 
result with the aircraft imagery (Fig. 6b). The GPC was the wheat trait that presented the 
highest estimation improvement when the SWIR bands were included in the model, com-
pared to using only the VNIR bands (R2 < 0.15, RMSE > 0.34%N). According to the Inc-
NodePurity, the most important estimator was the SWIR index, showing an important dif-
ference with the other indices (Fig. 7). The performance of using only the SWIR index was 
tested (R2 = 0.65, RMSE = 0.20%N), but a better result was achieved when it was combined 
with the VNIR indices.

The most accurate estimation of N output with the Sentinel dataset was obtained with 
the MLR model using the structural (GNDVI), chlorophyll (NDSI (B7, B8)), and SWIR 

Fig. 8  Coefficient of determination (R2) and root mean square error (RMSE) obtained when using Senti-
nel imagery to estimate wheat traits: a yield (kg  ha−1), b grain protein concentration, and c N output with 
linear regression (LR), multiple linear regression (MLR), artificial neural network (ANN), and random for-
est (RF). Indices used are on the x axis: spectral vegetation indices based on visible-near infrared regions 
related to chlorophyll content (chl) and plant structure (stru), vegetation index that includes a band within 
the SWIR region (SWIR), and radar vegetation index (RVI). Different white letters indicate significant dif-
ferences (p ≥ 0.05) between ensemble models with the same set of indices. Colored letters indicate differ-
ences between the same ensemble models using a different set of indices
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(NDSI (B11, B2)) indices (R2 = 0.71; RMSE = 16.46  kg  N   ha−1; Table  2; Fig.  8c), as 
obtained with the aircraft imagery when estimating N output (Fig. 6c). The Sentinel results 
are in agreement with the aircraft imagery showing that N output estimation is more accu-
rate than GPC estimation but less than yield estimation. The structural index obtained 
the highest IncNodePurity value in all cases, but it was similar to the value of the chlo-
rophyll index (Fig. 7). These indices also obtained the highest IncNodePurity value in all 
models with the aircraft imagery. The N output estimation was more accurate when using 
only one index based on the red-edge bands (NDSI (B7, B6)) than when combining the 
chlorophyll and the structural indices (R2 = 0.59; RMSE = 19.47  kg  N   ha−1), but includ-
ing SWIR bands for N output estimation when using Sentinel information, improved the 
performance compared with the best result obtained using only VNIR bands (R2 = 0.62; 
RMSE = 18.95 kg N  ha−1).

Differences in RVI between water levels were found in 2018 (P < 0.05; data not shown); 
however, no improvement was achieved when it was included in the analysis of any trait 
estimation.

General discussion

The present study analyzed whether the estimation of different winter wheat traits improved 
by combining indices related to different crop biophysical parameters. In all cases, an 
improvement was achieved when combining different indices rather than using one index 
only. Overall, the results indicated that a visible-SWIR sensor was the most suitable for 
all winter wheat traits; however, the spectral resolution and range was an important factor 
when estimating some traits.

Estimating yield based on hyperspectral VSWIR reduced RMSE by 3% compared 
with the Sentinel-2 estimation. If the VNIR region only was used, the RMSE difference 
between hyper- and multispectral sensor estimation was < 0.3%. Due to this small reduction 
in RMSE, the adequate spatial and temporal coverage, and its free availability, Sentinel-2 
imagery is suitable for accurately estimating yield in large areas; moreover, including the 
SWIR bands reduced uncertainty. The most important index for yield estimation was the 
SWIR index (NDSI (1106 nm, 1066 nm)), which is affected by lignin content and therefore 
by biomass, that is related to final yield (Marti et  al., 2007). When SIF was included in 
the analysis, it obtained the highest importance; this can be explained by the link between 
SIF and photosynthesis rate, which is affected by N (Camino et al., 2018) and water avail-
ability (Zarco-Tejada et al., 2012). Other studies also reported the utility of Sentinel-2 for 
wheat yield estimation using different techniques: Skakun et al. (2017) used Sentinel-2 and 
Landsat-8 time series for the peak-NDVI approach and obtained an RMSE of 310 kg  ha−1. 
Mehdaoui and Anane (2020) reduced the RMSE to 380 kg·ha−1 using the red-edge bands. 
Segarra et al. (2022) combined multidate Sentinel-2 information with ensemble models to 
achieve an RMSE of 740 kg  ha−1. Cavalaris et al. (2021) used EVI and NMDI for durum 
wheat yield estimation and obtained an RMSE of 538 kg  ha−1. Hunt et al. (2019) reduced 
the RMSE in winter wheat yield estimation from 660 kg  ha−1 when using only Sentinel-2 
information to 610 kg  ha−1 when it was combined with environmental data. For this rea-
son, our study encourages further research to include environmental data when aiming to 
estimate crop traits.

The GPC estimation was less accurate than the estimation of the other traits, and its 
accuracy depended greatly on the spectral region and resolution used. The Sentinel-2 VNIR 
bands were not suitable for GPC estimation in this study, as the RMSE was 39% higher 
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than the RMSE obtained with the hyperspectral VNIR or with the VSWIR Sentinel-2 band. 
The difference in RMSE between hyper- and multispectral VSWIR sensors was 8.1%, the 
same as between a hyperspectral VNIR and VSWIR sensor. Therefore, it is recommended 
to use a hyperspectral VSWIR sensor for GPC estimation. Raya-Sereno et al. (2021b)  also 
reported that broad bands were reliable for yield prediction; however, an accurate GPC and 
N output estimation required narrow bands. The need for a SWIR narrow band is attributed 
to the N–H bond absorption feature in the SWIR region (Curran, 1989), and because the 
N stored in vegetative organs is an important source for final GPC (Kichey et al., 2007). In 
addition, different factors affect reflectance in the SWIR region that can mask the N influ-
ence in this region (Yan et al., 2021). A review study (Bastos et al., 2021) indicated that 
VIs based on the absorption and reflectance peak of chlorophyll (blue and green, respec-
tively) are commonly used to estimate GPC near anthesis (GS60) because most leaf N is 
contained in chlorophyll (Wang et al., 2004). In the current study, a relationship (R2 ~ 0.5) 
between NDSI (green, blue) with GPC and with plant %N was obtained. Zhao et al. (2019) 
applied multilinear regression using crop parameters together with Sentinel-2 information 
and obtained a maximum value of R2 = 0.47 when estimating GPC.

The most accurate N output estimation was achieved by the hyperspectral VSWIR 
sensor; however, the differences in RMSE with the hyperspectral VNIR was only 3.1%. 
The RMSE obtained with the hyperspectral VNIR sensor was 15.7% lower than with 
the multispectral VNIR Sentinel-2, but this difference was reduced to 2.7% if the multi-
spectral SWIR bands were included. Therefore, if a hyperspectral VSWIR sensor is not 
available, similar accuracies in predicting N output can be achieved with a hyperspectral 
VNIR. Despite the fact that the Sentinel-2 (R2 = 0.71) and the hyperspectral (R2 = 0.74) 
VSWIR bands showed potential for N output estimation, the hyperspectral sensor reduced 
the RMSE by 6%. The hyperspectral sensor was found to be important because the most 
important index in the N output estimation was constructed with two bands in the red-
edge, which are difficult to adapt to multispectral sensors. Similar results were obtained by 
Prey and Schmidhalter (2019a), who highlighted the importance of the Sentinel-2 red-edge 
bands for the prediction of winter wheat N-related traits.

Conclusion

This study highlights the importance of using multispectral and hyperspectral sensors cov-
ering different spectral regions for assessing winter wheat biophysical parameters and traits 
such as yield, grain protein concentration (GPC), and N output. In all cases, the best trait 
estimation was attained when combining spectral indices calculated by using bands from 
the visible, red-edge, NIR, and SWIR regions. Of the three wheat traits evaluated, yield 
obtained the most accurate estimation, and presented similar results when the indices were 
retrieved with a hyperspectral sensor or with multispectral Sentinel-2 bands. In the case of 
GPC, both sensors obtained satisfactory results when the SWIR information was included. 
However, an improvement of 8.1% was obtained with the hyperspectral sensor. The red-
edge and SWIR-based indices were important for improving N output estimation with both 
sensors. Despite a more accurate estimation being attained with the hyperspectral bands, 
the potential of using Sentinel-2 bands for wheat trait assessment at large scales was great.
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