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Plant pathogens cause significant losses to agricultural yields 
and increasingly threaten food security1, ecosystem integrity 
and societies in general2–5. Xylella fastidiosa is one of the most 
dangerous plant bacteria worldwide, causing several diseases 
with profound impacts on agriculture and the environment6. 
Primarily occurring in the Americas, its recent discovery in 
Asia and Europe demonstrates that X. fastidiosa’s geographic 
range has broadened considerably, positioning it as a reemerg-
ing global threat that has caused socioeconomic and cultural 
damage7,8. X. fastidiosa can infect more than 350 plant species 
worldwide9, and early detection is critical for its eradication8. 
In this article, we show that changes in plant functional traits 
retrieved from airborne imaging spectroscopy and thermog-
raphy can reveal X. fastidiosa infection in olive trees before 
symptoms are visible. We obtained accuracies of disease 
detection, confirmed by quantitative polymerase chain reac-
tion, exceeding 80% when high-resolution fluorescence quan-
tified by three-dimensional simulations and thermal stress 
indicators were coupled with photosynthetic traits sensitive 
to rapid pigment dynamics and degradation. Moreover, we 
found that the visually asymptomatic trees originally scored 
as affected by spectral plant-trait alterations, developed  
X. fastidiosa symptoms at almost double the rate of the asymp-
tomatic trees classified as not affected by remote sensing.  
We demonstrate that spectral plant-trait alterations caused 
by X. fastidiosa infection are detectable previsually at the 
landscape scale, a critical requirement to help eradicate some 
of the most devastating plant diseases worldwide.

Xylella fastidiosa is considered one of the most dangerous plant 
pathogens worldwide6. It can infect more than 350 plant species9, 
causing diseases in several crops and large economic losses8. In the 
United States and Brazil, this xylem-limited plant pathogenic bac-
terium is associated with detrimental diseases in high-value crops, 
such as Pierce’s disease in grapevines and variegated chlorosis in 
citrus, respectively10. Its spread has recently gained a global dimen-
sion11: already widely distributed in the Americas and detected in 
Iran and Taiwan, X. fastidiosa has been known to be present in 
Europe since 2013 after its official identification in Italy12, causing 
economic and societal damage8.

The spread of X. fastidiosa within Europe has thus far not been 
contained7. Outbreaks detected in France and recently in Spain 
have raised concerns of X. fastidiosa spreading to the world’s largest 
olive-growing area (more than 2.5 million hectares) and throughout  

the Mediterranean agriculture8. The identification of all three main 
subspecies of X. fastidiosa (that is, fastidiosa, multiplex, and pauca) 
in Europe broadens the threat to several other crop plants, including 
almond, citrus and grapevine, but also to ornamental trees, as well 
as elms, oaks and sycamores. A major difficulty for X. fastidiosa con-
tainment arises from its very wide host range, with infections that 
do not cause symptoms in some host–strain combinations, despite 
the infected hosts continuing to act as inoculum sources9. This 
threat is further exacerbated because X. fastidiosa can be spread via 
xylem-sap-sucking insects without any specific vector relationship8 
and because of increased global trade.

Alarms have been raised by both the international scientific 
community8 and the media7, pointing out that eradication of  
X. fastidiosa will require robust monitoring and early detection of 
plants that show little to no signs of decline at the early stages of 
infection. A major limitation of standard large-scale mapping meth-
ods based on red and near-infrared (NIR) (for example, the normal-
ized difference vegetation index (NDVI) and its multiple variations 
obtained from broadband satellite sensors) is that they are useful 
only for detecting the advanced stages of disease damage, that is, 
when canopy defoliation, leaf wilting and chlorosis are apparent13. 
In addition, current hyperspectral satellite sensors lack the spa-
tial resolution to distinguish individual tree crowns. Accordingly,  
X. fastidiosa eradication efforts involving its early detection necessi-
tate high spatial resolution (that is, submeter) imaging spectroscopy 
and thermal data to assess subtle changes in spectral features and 
traits, a technology that can be potentially deployed at large scales 
with airborne platforms14.

We carried out intensive multiyear in situ inspections of more 
than 7,000 trees and airborne imaging data in 15 olive orchards, 
finding that physiological alterations caused by X. fastidiosa infec-
tion at the previsual stage were detectable in functional plant traits 
assessed remotely by hyperspectral and thermal sensors. We con-
firmed the presence of X. fastidiosa infection in all selected orchards 
by testing at least two symptomatic trees per plot by quantitative 
polymerase chain reaction15 (qPCR) assay. In addition, we sampled 
one of the olive fields more extensively for an orchard-level valida-
tion of the remote sensing model testing, by qPCR assays; 67 out 
of the 157 trees spanned the full range of symptoms, that is, from 
asymptomatic to severely affected. Although qPCR is considered 
the most sensitive diagnostic approach, its accuracy under field 
conditions for the detection of the X. fastidiosa in host plants is 
affected by the period of sampling and the uneven distribution of 
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Fig. 1 | Imagery acquisition and plant-trait fluorescence retrievals. a, Strips of airborne images of 40 cm hyperspectral radiance collected at the O2-A 
band, reflectance at 415 nm (used to calculate NPQI) and temperature (T; in K). b,c, Subsets of the very high-resolution (VHR) colour-infrared (CIR) 
hyperspectral (b) and thermal imagery (c) enable the identification of single trees to extract tree-crown radiance (L), reflectance (R) and temperature. 
d,e,f, Monte Carlo simulation modelled SIF emission via 3D scenes generated with FluorFLIGHT (e) from tree radiance (L) and irradiance (E) (f) to 
quantify fluorescence efficiency by radiative transfer.
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Fig. 2 | Contribution of remote sensing plant traits to previsual X. fastidiosa (Xf) symptom detection. a, ROC analysis from the pool of hyperspectral and 
thermal plant functional traits used to detect asymptomatic (asympt.) versus X. fastidiosa–symptomatic (sympt.) trees (left bars) and for initial versus 
advanced X. fastidiosa–symptomatic trees (right bars). b, The robustness across years of the functional traits for asymptomatic versus X. fastidiosa–
symptomatic trees. We analysed the ROC using the training dataset (n =​ 5,852 trees).
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Fig. 3 | Relationships between remote-sensed functional plant traits and X. fastidiosa (Xf) disease severity levels at leaf and canopy levels.  
a, Temperature (T; n =​ 922 leaves), fluorescence (Ft; n =​ 1,197 leaves) and Anth (Anti. index; n =​ 939 leaves), as well as hourly Ft (n =​ 2,863 leaves), 
measured in asymptomatic (asympt.; X. fastidiosa severity =​ 0) and increasingly symptomatic (sympt.) leaves of X. fastidiosa–infected olive trees.  
b, Mean tree-crown reflectance (RFL) for trees with increasing severity of X. fastidiosa symptoms in the red/NIR region (n =​ 923 trees), blue region  
(n =​ 923 trees), O2-A radiance (L) region for SIF quantification (n =​ 923 trees) and temperature (n =​ 1,493 trees). The standard deviation for the tree-crown  
T data is represented as shaded. c, Respective associated maps of NDVI, NPQI, SIF and CWSI, showing the within-crown variation of traits in 
asymptomatic, initial and low X. fastidiosa–symptomatic trees. d, Trait values across the entire sample of trees for NDVI, NPQI and SIF (n =​ 1,493 trees) 
and CWSI (n =​ 1,446 trees). The disease severity at leaf and canopy levels was compared by one-sided Tukey’s HSD test at 5%. Severity levels with same 
letter are not significantly different (Tukey HSD test, P <​ 0.05). In the boxplots, the black line represents the median, and the top and bottom are the 75th 
and 25th quartiles. The whiskers are the upper and lower limits based on the interquartile ranges (IQRs; Q ±​ 1.5 ×​ IQR). Average values are shown with a 
blue point. The outliers (circles) are the values out of the upper and lower limits. A pool of plant functional traits comprising pigment and structural traits, 
together with a flux-based fluorescence trait and temperature (PSFT), obtained the best overall accuracy and κ​ for X. fastidiosa detection through the SVM 
algorithm, yielding overall accuracy =​ 80.9% and κ​ =​ 0.61 (Fig. 4a; Supplementary Tables 4 and 5). By contrast, models built without SIF and temperature 
traits (that is, the pigment- and structure-based functional traits model), and particularly one limited to standard RGB–NIR spectral vegetation indices 
(SVI) commonly found in satellite sensors (NDVI and blue/green/red ratios; SVI model), obtained the lowest accuracies (overall accuracy =​ 65.4%; 
κ​ =​ 0.29). We obtained these results through validation with visual inspection data collected by plant pathologists from 1,332 trees per year in 15 fields, 
generating a large dataset with statistical robustness and ample variability in disease severity levels, tree structure and age, and agronomic management 
of the orchards within the X. fastidiosa–infested zone. a.u.: arbitrary units.
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the bacterium in the large canopy of the olive trees (especially at 
the early stage of infection). Moreover, this type of laboratory assay 
is time consuming and costly, and requires skilled and trained per-
sonnel. For these reasons, we evaluated non-destructive remote 
sensing methods comprising the acquisition of spectroscopy 
data to build 40-cm radiance and reflectance scenes in 260 nar-
row spectral bands (Fig. 1a,b) and in the thermal spectral region  
(Fig. 1a,c). The entire flight campaigns covered three areas within the  
X. fastidiosa–affected olive growth region in Southern Italy and 
scanned about 200,000 individual trees in 2016 and 2017, quantify-
ing tree-level physiology-related narrow-band spectral traits, solar-
induced fluorescence (SIF), and fluorescence efficiency by Monte 
Carlo three-dimensional (3D) scene generation (Fig. 1d) that  

modelled the individual tree fluorescence emissions (Fig. 1e) at the 
tree radiance level (Fig. 1f).

We used a multilayered functional plant-trait scheme to extract 
the alterations caused by X. fastidiosa from a pool of physiology-
related narrow-band hyperspectral indicators (NBHI). This pool 
included plant physiological traits specifically related to rapid 
changes in photosynthetic pigments and leaf processes not simu-
lated by any existing radiative transfer model, for example, the 
de-epoxidation state of the xanthophyll-cycle pigments via the 
violaxanthin, antheraxanthin and zeaxanthin pool16, and chloro-
phyll degradation via phaeophytinization17,18 (see Supplementary 
Table 113). In addition, we assessed traits sensitive to X. fastidiosa 
infection (that is, anthocyanins (Anth) and carotenoid/chlorophyll 
ratios) by a hybrid wavelet-inverted model inversion method 
(Supplementary Table 2; Supplementary Fig. 1), and quantified 
SIF emission and fluorescence efficiency by a multistep LUT-based 
inversion scheme (Supplementary Table 3; Supplementary Fig. 2). 
The inversion of radiative transfer models enables the simultaneous 
and independent retrieval of multiple leaf and canopy traits linked 
to physiological processes in plants. Thus, compared with single-
band and index-based relationships from radiance or reflectance 
spectra that simultaneously relate to several traits (for example, 
both photosynthetic pigments and structure), the model-inverted 
traits space is more likely to reveal the physiological processes asso-
ciated with the disease. Furthermore, the process-based retrieval of 
traits by physical models increases the potential transferability of 
findings to other datasets, diseases and plant species. Nevertheless, 
specific narrow-band spectral indices that track processes currently 
not simulated by any radiative transfer simulations can comple-
ment model-estimated traits.

To reveal the gas exchange dynamics associated with X. fastidiosa 
symptoms, we incorporated a functional trait consisting of temper-
ature-based plant stress indicators linked to stomatal conductance 
and tree transpiration alterations. Linear as well as machine- and 
deep-learning algorithms (linear discriminant analysis (LDA), sup-
port vector machine (SVM) and neural network ensemble (NNE) 
fed by the pool of functional plant traits via receiver operating char-
acteristic (ROC) analysis revealed that the chlorophyll degrada-
tion phaeophytinization-based spectral trait (NPQI)17,18, calculated 
in the blue region, and the thermal-based stress trait (crop water 
stress index (CWSI)) best distinguished X. fastidiosa–symptom-
atic from asymptomatic trees (Fig. 2a) in both years (Fig. 2b), fol-
lowed by Anth, carotenoids (Cx+c) and SIF. Notably, the importance 
of the functional traits varied as a function of X. fastidiosa symptom 
severity: NPQI and CWSI most reliably distinguished symptomatic 
from asymptomatic material (Fig. 2a, left bars), but were of lesser 
importance to discriminate between initial and advanced stages of 
the disease. For these symptomatic trees, SIF was the most sensi-
tive functional trait to detect the severity of X. fastidiosa symptoms  
(Fig. 2a, right bars).

The sensitivity of these physiology-based remote-sensed plant 
traits to previsual and early stages of the X. fastidiosa infection is 
supported in the literature by work that shows the photoprotective 
role of Cx+c and the protection from damage induced by environ-
mental stresses and plant pathogens provided by flavonoids such 
as Anth

19. These compounds accumulate in X. fastidiosa–infected 
plant material20 and are produced by the degradation of the chlo-
rophyll molecule into phaeophytin under stress conditions17,18. In 
addition, the alterations in stomatal regulation21 and photosyn-
thesis caused by plant–pathogen interactions22 lead to decreased 
fluorescence13,23 and transpiration24, and produce phenolic plant  
defence compounds25.

The alterations of plant functional traits that we detected 
remotely were highly consistent with X. fastidiosa–induced leaf 
physiological changes measured in situ. In particular, the changes 
we observed in the in situ Anth, leaf-level steady-state fluorescence 
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Fig. 4 | Remote sensing model performance and revisit analysis results.  
a, Overall accuracy (bars) and κ​ (bullets) of LDA, NNE and SVM algorithms 
distinguishing asymptomatic from X. fastidiosa–symptomatic trees using  
as inputs standard vegetation indices calculated from RGB–NIR bands 
(SVI), pigment- and structure-based functional traits, and PSFT. Statistics 
are shown separately for the data (n =​ 7,315 trees) used in training  
(TR; n =​ 5,852 trees) and testing (TS; n =​ 1,463 trees) for each of the three 
algorithms. b, Fraction of trees that were asymptomatic in June 2016 but 
showed visible symptoms during later revisits, for trees classified as  
non-symptomatic (n =​ 818 trees for SVM, n =​ 588 trees for neural networks 
and n =​ 534 trees for LDA) and symptomatic (n =​ 178 trees for SVM, 
n =​ 408 trees for neural networks and n =​ 462 trees for LDA) by remote 
sensing (true negatives and false positives, respectively). F1 and F2 indicate 
the dates of the airborne imaging campaigns, which corresponded with 
intensive field work (FW1 and FW2). The field revisits conducted are 
indicated as R1, R2, R3 and R4. The dotted blue and red lines represent 
the cumulative sum of the fraction of trees that were identified as true 
negatives and false positives by the three algorithms. In the boxplots, 
the black line within the box represents the median of the predictions of 
the three algorithms, and the top and bottom of the box are the 75th and 
25th quartiles, respectively. The whiskers represent the upper and lower 
limits based on the difference with the IQRs (Q ±​ 1.5 ×​ IQR). The average 
percentage predicted by the three algorithms is shown with a white point 
within the boxplot.
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and temperature leaf traits (Fig. 3a; Supplementary Fig. 3) were in 
line with the alterations observed in the corresponding traits quan-
tified from the imagery, such as Anth (Supplementary Fig. 1), SIF 
and CWSI (Fig. 3d). These traits differed significantly between 
asymptomatic and symptomatic leaves, even when symptoms were 
mild (Tukey’s honestly significant difference (HSD) test, P <​ 0.05) 
(Supplementary Fig. 3). Moreover, the high-resolution images 
revealed between- and within-tree-crown patterns of the functional 
traits associated with X. fastidiosa infection (Fig. 3b,c). Although 
widely used in global monitoring of vegetation, NDVI did not dif-
fer significantly between asymptomatic and symptomatic trees  
(Fig. 3d), and was therefore unable to detect non-visual symptoms 
of X. fastidiosa infection. We found that the reflectance changes in 
the blue region consistently tracked early and initial X. fastidiosa 
symptoms, in particular the 415- and 435-nm spectral bands used 
to calculate the NPQI17,18, which was the NBHI indicator most sen-
sitive to X. fastidiosa infection. The SIF calculated from the airborne 
radiance imagery and CWSI calculated from the remotely sensed 
tree-crown temperature showed statistically significant (P <​ 0.001) 
and consistent trends for early X. fastidiosa symptoms.

We evaluated the accuracies of the remote sensing-based SVM–
PSFT (pigment-, structural-, fluorescence- and temperature-based 
plant functional traits) disease detection model and the visual 
inspections using qPCR assay data obtained in a selected olive 
orchard. The assessment of the orchard-level remote sensing model 
validated with the tree-level qPCR dataset yielded overall accu-
racy =​ 94.03% and kappa coefficient (κ​) =​ 0.88. The performance of 
the visual inspection against qPCR (overall accuracy =​ 77.62% and 
κ​ =​ 0.55) showed the validity of the evaluations by the plant patholo-
gists, but reflected a lower performance than that using remote sens-
ing methods because of the impossibility of visually detecting the 
asymptomatic infections that were detected by qPCR. The valida-
tion of the remote sensing model with qPCR data enabled the gen-
eration of a spatial map of disease incidence prediction by remote 
sensing, revealing infected asymptomatic trees that were missed 
by the visual evaluations (Fig. 5a) but detected by remote sensing  
(Fig. 5b). Among all trees measured in this particular orchard by 

qPCR (n =​ 67), those visually considered asymptomatic by plant 
pathologists (n =​ 40) but proved infected via qPCR (n =​ 11) were 
detected as infected by remote sensing with 91% accuracy. When the 
analysis was extended to eight orchards where the qPCR-sampled 
trees were visible in the imagery (n =​ 100), the accuracy of the remote 
sensing model validated with the tree-level qPCR dataset yielded 
overall accuracy =​ 96% and κ​ =​ 0.92, whereas the performance of 
the visual inspection against qPCR remained at the same level as 
the orchard-level analysis (overall accuracy =​ 77% and κ​ =​ 0.54). 
Moreover, the remote sensing SVM–PSFT model detected 92.9% of 
the infected asymptomatic trees (qPCR =​ 1; disease severity =​ 0) that 
were missed by visual assessment (Supplementary Table 6).

These results obtained by remote sensing and validated with 
qPCR data suggested the existence of trees in the very early stage 
of the disease that were missed by the visual evaluations. To explore 
whether our remote sensing model fed by plant functional traits 
actually detected the early symptoms at a previsual stage, we added 
a temporal dimension to the analysis. Indeed, a critical finding of 
this study arose from further investigation of the trees seemingly 
wrongly considered symptomatic by remote sensing (that is, those 
initially considered “false positives” on the basis of examination by 
plant physiologists) over the course of 2 years through periodic field 
revisits. False-positive cases may arise from (1) error and uncertainty 
inherent to the remote sensing model used for detecting affected 
trees; and (2) trees that were indeed affected by X. fastidiosa but did 
not yet display the typical visible symptoms on which plant patholo-
gists rely. Thus, we revisited in situ (Fig. 4b; Supplementary Table 7)  
the trees identified as symptomatic by the remote sensing plant 
functional trait model applied to the 2016 image data (F1) but clas-
sified at the time as asymptomatic by plant pathologists on the basis 
of the absence of visible symptoms (false positives; n =​ 178 by SVM).

During these field revisits conducted 4 (indicated as R1), 8 
(R2), 11 (R3) and 12 months (R4) after the flight at the F1 date, 
we recorded the development of visible X. fastidiosa symptoms on 
1,700 out of the 3,328 trees initially evaluated. Four months after F1, 
61% of the false positives had developed symptoms, whereas only 
39% of the asymptomatic trees classified as unaffected by the remote 

a
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Xf detection by Remote Sensing (PSFT model)

Xf field evaluation (visual)

Asympt. Sympt. Asympt. but detected by qPCR

Undetected Detected

Fig. 5 | Field evaluation, qPCR tests and remote sensing spatial predictions. a, Map of an olive orchard imaged by thermal and hyperspectral remote 
sensing showing the visual evaluation by plant pathologists in the field. b, Remote sensing PSFT model used to detect X. fastidiosa (Xf)–affected trees. 
The visually asymptomatic trees assessed as affected by qPCR (shown with red border) in (a), and therefore missed in the field evaluations by plant 
pathologists, were detected by remote sensing using functional traits (b) with 91% accuracy. Background in stronger blue tones shows the areas more 
affected by X. fastidiosa.
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sensing-driven PSFT model had (true negatives, n =​ 818, two-sided 
t-test: P < 0.001). This difference in visible symptom development 
was maintained throughout the 1-year postflight evaluations (R1, 
R2, R3 and R4), with false-positive trees consistently developing 
symptoms sooner than true-negative trees. These results obtained 
in the multitemporal revisit scheme and via qPCR confirmed that 
the remote sensing-driven PSFT model based on plant functional 
traits was able to detect X. fastidiosa symptoms earlier than standard 
visual inspections by plant pathologists. The ability to detect previ-
sual infections is particularly relevant given the threat of infected 
but asymptomatic trees contributing to the X. fastidiosa epidemics, 
because plants artificially infected with X. fastidiosa and maintained 
in controlled environmental conditions take 10–12 months to start 
developing visible symptoms8,12.

Notably, our analysis was not based just on single spectral bands 
or indices to feed the model. Instead, we used radiative transfer to 
independently quantify physiological traits linked to photosynthe-
sis, pigment degradation and structural changes of trees undergoing 
early stress caused by X. fastidiosa infection. This methodology per-
mits generalization and transfer to other plant species or diseases, 
because the retrieved traits are closely or even directly linked to the 
physiological changes occurring in affected vegetation. The relative 
importance of these traits for disease detection will differ among 
pathogens and host plants, depending on the physiological effects 
associated with the disease. Operational remote sensing-based 
detections of pathogen infections should thus rely on the spectral 
bandsets enabling the retrieval of the most sensitive plant traits 
linked with a particular disease. In our case, aircraft payloads imag-
ing less than 10 narrow bands (for example, 10 nm or less) in the vis-
ible NIR region in tandem with a broadband thermal sensor would 
reach overall accuracies exceeding 70%. As global trade increasingly 
exposes natural and agricultural systems to exotic pathogens, such 
advanced large-scale physiology-focused remote sensing methods 
relying on plant functional traits could prove critical to prevent and 
manage plant disease epidemics worldwide.

Methods
Field data collection. We assessed incidence and disease severity of X. fastidiosa–
induced symptoms in the field in June 2016 and July 2017 in 15 orchards in 
the X. fastidiosa–infected area of Puglia, Southern Italy. Planting density and 
overall orchard management were highly variable within the selected area. We 
evaluated disease severity by visually inspecting every tree for symptoms of canopy 
desiccation and assessing it on a 0–4 rating scale according to the percentage 
of canopy affected by the disease symptoms: 0 indicated the absence of visually 
detectable symptoms (asymptomatic) and 4 referred to trees showing canopies 
with a prevalence of dead branches. In total, we evaluated 3,328 trees in 2016 
(1,442 (disease severity =​ 0), 762 (disease severity =​ 1), 802 (disease severity =​ 2), 
250 (disease severity =​ 3) and 72 (disease severity =​ 4)) and 3,987 trees in 2017 
(2,607 (disease severity =​ 0), 687 (disease severity =​ 1), 555 (disease severity =​ 2), 
122 (disease severity =​ 3) and 16 (disease severity ≥​ 4)). Most of the olive orchards 
sampled had old trees (more than 50 years old) of cultivars Ogliarola Salentina and 
Cellina di Nardò, the native and widespread cultivars in the area. These cultivars 
have been shown to be highly susceptible to the CoDiRO strain associated with the 
Italian X. fastidiosa epidemic. X. fastidiosa–infected trees of both cultivars typically 
show severe desiccation that rapidly encompasses the entire canopy (within 2–3 
years) and causes complete canopy die-back. Only one olive orchard consisted of 
trees of the Leccino cultivar (~35 years old), which has genetic traits of resistance 
to X. fastidiosa, as demonstrated by the lower bacterial concentrations in trees of 
this cultivar and the milder symptoms in infected trees26.

During the field campaigns, we conducted different physiological 
measurements on leaves (Fig. 3a; Supplementary Fig. 3). Flavonoid concentration, 
chlorophyll content, anthocyanin content index, nitrogen balance index and leaf 
temperature were measured on 15/25 asymptomatic/symptomatic leaves per tree 
using a leaf clip Dualex 4 (Force-A). On the same leaves, the steady-state leaf 
fluorescence yield and the leaf reflectance within the visible and NIR regions 
were measured with a FluorPen FP100 and PolyPen RP400, respectively (Photon 
Systems Instruments), calculating leaf NPQI. We conducted a revisit assessment 
of disease severity in October 2016, February 2017, June 2017 and July 2017, 
reevaluating 1,700 of the 3,328 trees originally evaluated in June 2016. In the  
15 olive orchards selected for symptom scoring, we confirmed the presence of  
X. fastidiosa infections by sampling and testing at least two symptomatic trees per 
plot. Diagnostic tests were performed using qPCR assays15 in all orchards under 

study. In addition, one of the orchards was selected for more extensive testing 
by qPCR assay, using 67 out of the 157 trees of this orchard. This qPCR dataset 
was used to validate the remote sensing and the visual evaluation methods. On 
the basis of the qPCR assays, the trees were categorized as positive (presence of 
infection) or negative (no bacterial infection detected) based on the resultant 
quantification cycle (Cq) values. Clear-cut values were consistently obtained for 
the trees, both symptomatic and asymptomatic, categorized as qPCR-positive 
(that is, Cq ranging from 23 to 28; a positive result is considered if Cq <​ 35 and 
a clear exponential fluorescence curve is observed). Conversely, no fluorescence 
(Cq =​ 0) was detected in the trees categorized as qPCR-negative. We used the data 
from eight orchards where the qPCR-sampled trees were visible in the imagery 
(n =​ 100) for further statistical analysis. In particular, we evaluated the detection by 
the SVM–PSFT remote sensing model of the X. fastidiosa–infected trees (n =​ 58), 
splitting them into infected symptomatic (qPCR =​ 1; disease severity ≥​ 1; n =​ 44) 
and infected asymptomatic trees (qPCR =​ 1; disease severity =​ 0; n =​ 14) as assessed 
by qPCR in the laboratory.

Hyperspectral and thermal image data collection and processing. We acquired 
imagery on 28 June 2016 and 5 July 2017 over 1,200 ha within the X. fastidiosa–
infected area using a hyperspectral sensor and a thermal camera on board a 
manned aircraft. Both cameras were flown 500 m above ground level at midday, 
acquiring hyperspectral and thermal imagery at 40- and 60-cm pixel resolution, 
respectively. We covered the visible and NIR regions with a micro-hyperspectral 
imager (VNIR model; Headwall Photonics, Fitchburg, MA, USA) operating in the 
spectral mode of 260 bands acquired at 1.85 nm per pixel and 12-bit radiometric 
resolution, yielding 6.4 nm full-width at half-maximum (FWHM) with a 25-μ​m 
slit in the 400–885 nm region. We set the frame storage rate on board the aircraft 
to 50 frames s−1 with 18 ms integration time. The 8-mm focal length lens yielded 
an instantaneous field of view (FOV) of 0.93 mrad and an angular FOV of 49.82°. 
We calibrated the hyperspectral sensor radiometrically in the laboratory with an 
integrating sphere (CSTM-USS-2000C Uniform Source System; LabSphere) using 
coefficients derived from a calibrated uniform light source at four illumination and 
six integration times. Atmospheric correction enabled the conversion of radiance 
values to reflectance using total incoming irradiance simulated with the SMARTS 
model27,28. In addition, we measured aerosol optical depth in the field at 550 nm 
with a Micro-Tops II Sunphotometer model 540 (Solar LIGHT) during the flight. 
We orthorectified the hyperspectral imagery with PARGE (ReSe Applications 
Schläpfer), using inputs from an inertial measuring unit (IG500 model; SBG 
Systems) installed on board and synchronized with the micro-hyperspectral 
imager. Due to the high spatial resolution collected (40 cm) and the large size 
of most of the trees studied (>​ 5 m), spatial binning was applied to increase the 
signal-to-noise ratio (SNR) of the instrument. In addition, we applied spectral 
binning because of the large number of spectral bands collected with oversampling 
(260 bands at 1.85-nm sampling interval). After performing both spatial and 
spectral binning, SNR increased to values greater than 300:1, showing radiance 
spectra with absence of noise (Fig. 1f) and in the reflectance spectra (Fig. 3b). 
The thermal camera (FLIR SC655; FLIR Systems) had a resolution of 640 ×​ 480 
pixels and was equipped with a 24.6 mm f/1.0 lens connected to a computer via 
the GigaE protocol. This camera has a spectral response in the range of 7.5–14 μ​m 
and operates with a thermoelectric cooling stabilization, yielding high sensitivity 
less than 50 mK. We calibrated the camera in the laboratory using a blackbody 
(model P80P; Land Instruments) at varying target and ambient temperatures, and 
in the field through vicarious calibrations using surface temperature measurements 
obtained following Calderón et al.13

The high-resolution hyperspectral and thermal imagery acquired over the 
orchard allowed single-tree identification using automatic object-based crown 
detection algorithms. The algorithms were used to calculate mean temperature 
and hyperspectral reflectance for pure crowns. We used image segmentation 
procedures as described by Calderón et al.29 In this study, we applied four image 
segmentation methods to the thermal and hyperspectral images to extract 
temperature, radiance and reflectance spectra from each pure tree crown. The 
very high-resolution imagery acquired enabled the identification and delineation 
of each tree crown independently in the thermal and hyperspectral datasets, 
minimizing background and within-crown shadow effects at the border pixels of 
each tree crown. The object-based image segmentation methods selected for the 
results reported in this study were Niblack’s30 thresholding method and Sauvola 
and Pietikäinen’s31 binarization techniques to separate tree crowns from the 
background. Next, we applied a binary watershed analysis using the Euclidean 
distance map for each object32 to automatically separate trees with overlapping 
crowns. We calculated narrow-band spectral indices for each tree crown from the 
260 spectral bands extracted by image segmentation. The spectral index-based 
traits explored in this study are closely related to specific features of leaf physiology, 
and therefore potentially sensitive predictors of the disease13. Thus, according  
to the effects of X. fastidiosa infection in olive trees, we selected spectral indices 
from the plant-trait functional groups related to chlorophyll, carotene and 
xanthophyll pigments.

Model inversion methods. The derivation of canopy structural parameters and 
leaf biochemical constituents from each individual tree was performed by inversion 
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of the radiative transfer model PROSAIL for the pure-vegetation pixels extracted 
from each tree crown. The model couples the leaf reflectance PROSPECT model, 
accounting for leaf properties such as pigment concentrations, and the canopy 
reflectance model SAIL, which accounts for canopy structural properties, such as 
leaf inclination and the sun-observer geometry. The versions used in this study 
were PROSPECT-D33 and 4SAIL34, respectively. The inversion of PROSAIL was 
performed using a look-up-table (LUT) approach, in which randomized input 
parameters (Supplementary Table 2) are used to simulate canopy reflectance 
data, which were then compared with the acquired airborne spectra. To reduce 
the complexity and thus alleviate the ill-posed problem of the LUT inversion, we 
fixed several parameters by assuming that their variation is relatively low for the 
canopies under investigation or that the spectral range considered (400–885 nm) 
is not affected by these parameters. The variable parameters considered comprised 
chlorophyll content, carotenoid content, anthocyanin content, mesophyll structure, 
leaf area index (LAI) and the average leaf angle. For the LUT generation, the values 
for these parameters were sampled from a uniform distribution within a range 
that is plausible for the assessed plant canopies (Supplementary Table 2). Previous 
studies demonstrated that wavelet analysis improved radiative transfer model 
inversions35–37. It decomposes the reflectance spectra into frequency components 
of different scales and thus spectral characteristics, such as absorption features 
of plant pigments. Accordingly, the correspondence in terms of RMSE between 
simulated spectra and airborne spectra was measured using a transformation of 
the reflectance spectra into six continuous wavelets derived by a Gaussian kernel. 
The estimates for each trait were derived by selecting the 1% of the LUT entries and 
respective spectra that resulted in the smallest RMSE. The parameter values of these 
LUT entries were subsequently weighted by their RMSE and averaged. A summary 
of the traits retrieved for each severity level is given in Supplementary Fig. 1.

We retrieved sun-induced chce emission throughout the leaf and canopy 
using the 3D model FluorFLIGHT38. The model is based on existing theory 
of radiative transfer by coupling the leaf fluorescence model FLUSPECT39 and 
the 3D ray-tracing model FLIGHT40,41 to account for the canopy components. 
Input data required to run the models are described in Supplementary Table 3. 
FluorFLIGHT was used to (1) estimate fluorescence efficiency independently from 
other confounding factors (LAI, chlorophyll a +​ b (Ca+b)) and (2) to evaluate the 
fluorescence efficiency estimation from the O2-A in-filling FLD method with a 
6.4-nm FWHM sensor. We used FluorFLIGHT in a multistep LUT-based inversion 
scheme38 to retrieve full crown SIF and fluorescence efficiency from a complex 
scene accounting for the influence of scene structure and composition. Fluorescence 
efficiency was quantified on the basis of the FLD2 calculation from the airborne 
image using the LUT derived from FluorFLIGHT. As a prior step, we quantified the 
optimal parameter combination of N, Ca+b, Cx+c and LAI using PROSAIL42,43. The 
model was originally developed at 1 nm FWHM. For comparisons with the airborne 
hyperspectral imagery, we used model simulations convolved to 6.5 nm FWHM to 
match the spectral resolution of the radiance imagery acquired by the hyperspectral 
airborne sensor, evaluating the effects of the bandwidth on the fluorescence 
efficiency versus SIF relationship (Supplementary Fig. 2).

Statistical analysis. We used multivariate analyses based on classification and 
machine-learning algorithms to classify disease incidence and severity. We assessed 
the ability of various selections of spectral indices to estimate disease severity using 
SVM, neural networks and LDA. We tested these modelling approaches for three 
different objectives, assessing the separation between: (1) case A: asymptomatic 
versus symptomatic trees (affected), and (2) case B: initial X. fastidiosa symptoms 
(disease severity =​ 1) versus advanced X. fastidiosa symptoms (disease severity =​ 2, 
3 and 4) severity levels. We validated the selected models by partitioning the 
dataset into two samples: the training sample, containing 80% of the data collected 
over 2 years (2016 and 2017) for each disease severity class selected at random, and 
the testing or validation sample, with the remaining 20%. We fitted each model 
using the training sample and validated it by using the testing sample to assess its 
classification accuracy. In a first step, we performed a variable reduction based on 
variance inflation factor (VIF) analysis for each of the two objectives described 
(cases A and B) on the training set. This was done to avoid multicollinearity among 
predictor variables (that is, plant traits). The variables with a VIF less than 10 were 
retained for model development. Variables used to build the different models 
evaluated were (1) single reflectance bands, for operational purposes we assessed 
the 10 most sensitive wavelengths related to the disease; (2) spectral indices listed 
in Supplementary Table 1, with which we found the indices most sensitive to the 
disease to be NPQI, CWSI, PRI∙​CI, PRIn SIF, BF1, PRIM1, CRI700m, BF2, PRIM4, 
DCabxc, VOG2 and TCARI/OSAVI; and (3) plant traits estimated by model 
inversion (Fig. 2) using the radiative transfer models indicated earlier. Wilks’ 
lambda method44 was used to identify the variables with the greatest contribution. 
Then, we used the data retained through VIF analysis in the three classification 
methods (SVM, neural network and LDA). We performed the SVM analysis using 
R software (version 3.4.0; R Development Core Team) with the “e1071” package45. 
We applied a non-linear SVM classification method using the radial basis function 
kernel. We built the neural network using the “nnet” package46 in R, on the basis of 
feed-forward networks with a single hidden layer. To reach the best performance 
of the neural network, guaranteeing the maximization of its algorithm, we trained 
500 neural networks for each objective and selected the one with the highest 

classification accuracy. In addition, we set the neural network parameter size, the 
number of units in the hidden layer, and the weight decay for the quantification 
of the penalty of misclassification errors using a cross-validation approach within 
the “caret” package47 in R. We also conducted LDA using the “caret” package in 
R to generate a discriminant function capable of determining the classification 
accuracy of the dataset, on the basis of the pooled covariance matrix and the prior 
probabilities of the classification groups44. We assessed the classification accuracies 
of three different sets of plant traits: (1) PSFT; (2) pigment- and structure-based 
functional traits; and (3) standard red-green-blue (RGB)–NIR bandset (SVI) 
by calculating the overall accuracy (in %) and the κ​, which provides an overall 
accuracy assessment for the classification based on commission and omission 
errors for all classes48.

We applied non-linear SVM classification models using the radial basis 
function with a leave one out cross-validation and a stochastic gradient boosting 
machine to test the remote sensing-based PSFT model with qPCR assay data 
obtained in (1) one field with trees affected by X. fastidiosa and asymptomatic 
trees (n =​ 67 trees tested; total number of trees in the orchard =​ 157), and (2) trees 
tested with qPCR (n =​ 100) located within eight olive orchards throughout the 
study area. Training of the SVM model was performed using an iterative procedure 
implemented with the “caret” package47 in R. In a first step, balance techniques 
were performed to minimize unbalanced data effects; then, we conducted 50 
iterations of non-linear SVM classification methods to predict the qPCR data  
using the remote sensing-based PSFT model. In the next step, a sequential 
stochastic gradient boosting was trained using an ensemble model obtained from 
50 SVM predictions. We fitted each non-linear SVM model and ensemble model 
to assess its classification accuracy. We assessed the classification accuracies of 
the proposed remote sensing SVM–PSFT disease detection model and the visual 
evaluation performed by plant pathologists against qPCR assay data obtained  
at the orchard level.

In October 2016, February 2017, June 2017 and July 2017 we revisited 1,700 
out of the 3,328 trees evaluated in June 2016 to assess the potential of the remote 
sensing-based methods to detect trees affected by X. fastidiosa before symptoms 
become visible. We selected the revisited plots to cover a wide range of initial 
disease incidence and severity values. The revisit study focused on calculating the 
confusion matrix for each model to predict disease severity for the trees evaluated 
in June 2016 and reevaluated in October 2016. We used this confusion matrix to 
calculate the percentage of true negatives (that is, trees classified as asymptomatic 
by remote sensing and field assessment in June) and false positives (that is, trees 
classified as symptomatic by remote sensing but showing no visual symptoms in 
the field assessment in June) that developed symptoms in October. In total, the 
1,700 evaluated trees in the revisit consisted of 818 (true negatives), 412 (true 
positives), 178 (false positives) and 292 (false negatives) trees. The results for the 
studied cases (A and B) and all classification methods (SVM, neural networks and 
LDA) are shown in Supplementary Tables 4 and 5, the results of the qPCR data 
analysis across eight orchards are shown in Supplementary Table 6, and the revisit 
study for the SVM method is displayed in Supplementary Table 7.

Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data and code availability. The data and the custom code required for the analysis 
conducted in this study (analysis-1.R, analysis-2.R and analysis-3.R) are available at 
the GitHub repository (https://github.com/Quantalab/Xf-NPlants-2018).
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Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 
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    Experimental design
1. Sample size

Describe how sample size was determined. Disease severity (DS) was evaluated in the field for every tree in a 0–4 rating scale. In total, 
we evaluated 3,328 trees in 2016 [1,442 (DS = 0), 762 (DS = 1), 802 (DS = 2), 250 (DS = 3), and 
72 (DS = 4)] and 3,987 trees in 2017 [2,607 (DS = 0), 687 (DS = 1), 555 (DS = 2), 122 (DS = 3), 
and 15 (DS = 4)]. Field plots were selected after inspecting a wide range of fields affected by 
Xylella fastidiosa within the time of the airborne flights carried out with the imaging 
spectroscopy and thermography over the infected area of study. This resulted in the sample 
size indicated above.

2. Data exclusions

Describe any data exclusions. No data reduction / exclusion was carried out.

3. Replication

Describe the measures taken to verify the reproducibility
of the experimental findings.

Replication of the methods and validity of the models was carried out in this two-year data 
collection experiment. Models were validated accross years, and the spectral plant-trait 
indicators were assessed for robustness across years. Replication attempts were 
successful accross models (SVM, LDA, NN) and using LOOCV methods.

4. Randomization

Describe how samples/organisms/participants were
allocated into experimental groups.

Each contaminated field was assessed entirely, i.e. every and each tree was assessed.

5. Blinding

Describe whether the investigators were blinded to
group allocation during data collection and/or analysis.

Researchers in the field evaluated the trees without prior knowledge of disease status, as 
visual symptoms were evaluated for each and every single tree.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6. Statistical parameters
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the
Methods section if additional space is needed).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

R software (version 3.4.0; R Development Core Team, Vienna, Austria) with the e1071, nnet, 
and caret packages. PROSPECT-D, 4SAIL, PROSAIL, FLIGHT, FLUORFLIGHT, FLUSPECT 
radiative transfer models were used for the retrieval of plant traits from hyperspectral data.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8. Materials availability

Indicate whether there are restrictions on availability of
unique materials or if these materials are only available
for distribution by a third party.

No unique materials were used

9. Antibodies

Describe the antibodies used and how they were validated
for use in the system under study (i.e. assay and species).

No antibodies were used

10. Eukaryotic cell lines
a. State the source of each eukaryotic cell line used. No eukaryotic cell lines were used in sections a-d below

b. Describe the method of cell line authentication used. Describe the authentication procedures for each cell line used OR declare that none of the cell 
lines used have been authenticated OR state that no eukaryotic cell lines were used.

c. Report whether the cell lines were tested for
mycoplasma contamination.

Confirm that all cell lines tested negative for mycoplasma contamination OR describe the 
results of the testing for mycoplasma contamination OR declare that the cell lines were not 
tested for mycoplasma contamination OR state that no eukaryotic cell lines were used.

d. If any of the cell lines used are listed in the database
of commonly misidentified cell lines maintained by
ICLAC, provide a scientific rationale for their use.

Provide a rationale for the use of commonly misidentified cell lines OR state that no commonly 
misidentified cell lines were used.
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or
animal-derived materials used in the study.

No animals were used

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population
characteristics of the human research participants.

The study did not involve human research participants
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