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Scaling-Up and Model Inversion Methods with
Narrowband Optical Indices for Chlorophyll
Content Estimation in Closed Forest Canopies with
Hyperspectral Data

Pablo J. Zarco-Tejada, John R. Miller, Thomas L. Noland, Gina H. Mohammed, and Paul H. Sampson

Abstract—Radiative transfer theory and modeling assumptions dices can in principle be readily transferred to the MERIS sensor
were applied at laboratory and field scales in order to study the using the R7s0/R7o5 Optical index.
link between leaf reflectance and transmittance and canopy hyper-
spectral data for chlorophyll content estimation. This study was
focused on 12 sites ofcer saccharumM. (sugar maple) in the Al-
goma Region, Canada, where field measurements, laboratory-sim-
ulation experiments, and hyperspectral compact airborne spectro-
graphic imager (CASI) imagery of 72 channels in the visible and

near-infrared region and up to 1-m Spatia| resolution data were XTENSIVE research haS been Carrled out at the |eaf Ievel

acquired in the 1997, 1998, and 1999 campaigns. A different set . . . .
of 14 sites of the same species were used in 2000 for validation of in order to assess the physiological condition based on the

methodologies. Infinite reflectance and canopy reflectance models Study of the light interaction with the foliar medium. The total
were used to link leaf to canopy levels through radiative transfer chlorophyll content in leaves decreases in stressed vegetation,
simulation. The closed and densefAI > 4) forest canopies of changing the proportion of light-absorbing pigments and
Acer saccharumM. used for this study, and the high spatial resolu- leading to less overall absorption with chlorophylland b

tion reflectance data targeting crowns, allowed the use of optically . . . .
thick simulation formulae and turbid-medium SAILH and MCRM (chl,.,) being the most important plant pigments absorbing

canopy reflectance models for chlorophyll content estimation by Plue and red light in the 430-660 nm region, respectively [1],
scaling-upand by numerical model inversiorapproaches through [2]. Differences in reflectance between healthy and stressed
coupling to the PROSPECT leaf radiative transfer model. Study of vegetation due to changes in pigment levels have been detected
the merit function in the numerical inversion showed that red edge i, thegreen pealand along theed edge(690 to 750 nm) (e.g.,

optical indices used in the minimizing function such afzs0 / Rr10 N - . . : i
perform better than when all single spectral reflectance channels [31-6]), allowing remote detection methods to identify vege

from hyperspectral airborne CASI data are used, and in addition, tation stress and mapping through the influence of chlorophyll
the effect of shadows and LAl variation are minimized. Estimates content variation [7]. Several narrowband leaf-level optical
of leaf pigment by hyperspectral remote sensing of closed forest indices have been reported in the literature that might be applied
?SRAOSPE?S)WWG _ShC}W“ t03 ?e f5e§sibI7 with E_Ot me?n siquatr_e erl;ors to hyperspectral canopy reflectance dataddr, ,;, estimation
s) ranging from 3 to 5. cm?. Pigment estimation -
model inversic?n ags described intﬁi% paper usging these red edgeyin-at Iarger s_cal_es [8]. [9]. Nevgrtheless,_ m_ost studies related
to optical indices for vegetation functioning are based on

measurements made at the leaf level rather than at the canopy
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3) Red Edge Reflectance-Ratio Indices/ogelmann 1l. METHODOLOGIES FORESTIMATION OF PIGMENT CONTENT
(Rrao/R720), (Rrza — Rp7)/(Rrsis +  Rose), IN VEGETATION CANOPIES SCALING UP AND MODEL
(R34 — Rra7)/(R715 + Rroo); Gitelson and Merzylak INVERSION

(R7s0/Rr00), (R7s50/Rs50); Carter (Rgos/Rre0); Cur-
vature index(Rg7s - Reoo)/(R2s3), and the area of the  Predictions of chlorophyll content or any other canopy bio-
derivati 88377 . ) )
erivative under the red edg 50 D physical parameter from airborne or satellite canopy reflectance
4) Spectral and Derivative Red Edge Indicethe red can been carried out through four different methodologies:
edge inflection and chlorophyll-well wavelengths, 1) directly studying the statistical relationships between
and )., respectively, from red edgimverted-gaussian ground-measured biochemical data and canopy-measured
curve fitting [18], as well as spectral indices calcureflectance [19], [20]; 2) applying the leaf-level relationships
lated from derivative analysis(D-15/D705); DPR1 derived between optical indices and the pigment content
(DX\p/DApy12), DPR2  (DA,/DMy422), DP21 directly to canopy-measured reflectance [21]-[23]; 3) scaling
(DXy/D+o3) and DP22 (D),/D2), where D), up the leaf-level relationships based on optical indices related
is the value of the reflectance derivative at thespectral to pigment content through models of canopy reflectance or
wavelength. infinite reflectance(R..) [8], [15]-[17]; and 4) inverting the

The successful application of such extensive research @pserved canopy reflectance through a canopy reflectance or
leaf-level optical indices to earth observing instruments at mubHinite reflectance model coupled with a leaf model to estimate
broader scales in order to predict canopy condition, requiré optimum pigment content [17], [24]—{29].
the development of links between the leaf and the canopy,The four proposed methodologies have advantages and dis-
where photon-vegetation interactions are affected by the twdvantages that are related to the complexity of the modeling
different media. The estimation of pigment content at a canoppproach selected and the degree of general or local applica-
level can be performed using simple statistical relationshipshility of the methodology in remote sensing. The first method
a leaf level through the use of optical indices [19]-[23], usingtudies the correlations between canopy-measured reflectance
modeling methods through radiative transfer by numerichy a field, airborne or satellite sensor with ground-measured
model inversion [24]-[29] and by a combination of leaf-levgbigment, or any other biophysical constituent. In this case, no
empirical relationships coupled with a canopy reflectance (CR)af reflectance is measured, and therefore, the link between
model [16], [17]. Research on the application of radiativeanopy reflectance and biochemical content is found through
transfer models for coupling leaf and canopy models showgatistical relationships. Multivariate analysis between visible
promising results in the simulation of the pigment effect on legifrared imaging spectrometer (AVIRIS) reflectance and total
reflectance and in turn the effect of the geometrical arrangemeiifogen, lignin, starch, chlorophyll content, and LAI [19]
of leaves on the canopy reflectance. Such developments haug with nitrogen and chlorophyll [20] applied by stepwise
the potential to replace the statistically-based approaches fqjtiple-regression procedure using the AVIRIS spectral
estimation of leaf bioindicators with quantitative model-basgshnds showed good statistical relationships derived at specific
methods. The application of such methods in forestry canopigg,ebhands. Although significant correlations were found, no
where canopy structure plays an important role, the selectign.giciive capabilities could be inferred to other study sites

of the merit function used in the optimization of simulatedince the locally-derived relationships are affected by species
canopy reflectance coupling a leaf and a canopy model, agrqd canopy structure.

the effect of leaf area index (LAI), shadows an understorey . . .

) . : The second method, which uses statistical leaf-level relation-

in the modeled reflectance, and therefore, in the estimated . . ) . .
ips applied to canopy reflectance for pigment estimation, is

. : . S
pigment content, we need continued extensive research wi ) : o .
real airborne or satellite-level data. Throughout this paper, tf 0_5|te a_md SPECIES spemf!c [32], [3.3’] and therefore requires
term LAl represents effective leaf area indéx, as defined re atlonsh|p cgllbratlon that is a f“r.‘c“"” of the canopy struc-
in [30], since L. can be conveniently defined in terms ofure and viewing geometry at the time of remote sensing data
canopy gap fraction. Inherently, this usage ignores the effe lection. Therefore, the statistical relationships derived at leaf

of woody material and foliar clumping needed for a morLgveI need to be “calibrated” in order to be useful for estima-

detailed specification of LAI [31], but for flat deciduous leavediOn @t the canopy level, due to the differences between the two

this simplification is considered acceptable. Methodologiégedia: one where the relationship is derived (leaf) and the other
for the application of radiative transfer theory and modelinghere itis applied for estimations (forest canopy). This method-
assumptions at laboratory and field scales in order to defiRio9y allows the derivation of relationships based on optical in-
the link between leaf reflectance and transmittance and can@gs calculated at wavelengths where subtle changes in leaf re-
airborne hyperspectral data acquired with the compact airboffRctance correspond to specific biophysical processes that are
spectrographic imager (CASI) are discussed in the followirigrgeted for measurement at the canopy level. Stepwise mul-
sections. Airborne data acquired with different spectral arfigple-regression is often used to develop predictive algorithms
spatial characteristics over twelMeer saccharunM (sugar from leaf reflectance , which are then applied to airborne data:
maple) study sites in four consecutive years at 1 m, 2 m, aAdIRIS [23] and airborne imaging spectrometer (AlS) spectra
3 m spatial resolutions and in 72 spectral channels in tf&l]. Laboratory canopy studies [22] and those using AVIRIS
visible and NIR facilitated the investigation of such importargpectra [34] were directed to the identification of spectral bands
questions through leaf and canopy radiative transfer models &iboth leaf and canopy levels which are less sensitive to changes
chl, 4, estimation. between levels, thereby minimizing effects due to the canopy,
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thus selecting spectral bands that could be used directly for pusing Minolta SPAD-502 for estimation of leetil,;, are de-
diction at canopy level. Application of leaf-level relationshipscribed. Other studies with lower spatial and spectral resolu-
to canopy reflectance through optical indices has been the ttian data [36], [37] use canopy model inversion for extracting
ditional method used in the past, and a summary of the opticalnopy biophysical information from large swath satellite data
indices derived at the leaf level was described in the introduat global scales using the advanced very high resolution ra-
tion. diometer (AVHRR) and VEGETATION/SPOT4, respectively,
In the third methodology, the same relationships betweand therefore, its applicability and portability to narrow-band
leaf constituent content and canopy reflectance are derivégperspectral high-spatial airborne data cannot be evaluated.
by scaling up the optical indices through infinite or canopy Simulation of the tree crown reflectance spectral content for
reflectance models [8], [9], [17]. A primary advantage is thatomparison to the measured canopy reflectance and retrieved
the use of infinite or canopy reflectance models as part of thgtical indices may be done through.. and CR models,
calculation of relationships avoids the post-calibration step @&pending upon the complexity and assumptions made with
compensate for canopy structure or viewing geometry. Therespect to the type of vegetation canopy and viewing geometry.
fore, scaled-up leaf-level relationships can be used directfyfinite reflectance formulations model reflectance without
for bioindicator predictions on measured canopy reflectancgnopy structure or viewing geometry considerations, based
data by considering canopy structure and viewing geomesglely on leaf reflectance and transmittance. These formula-
information in the model scaling-up step. The objective of thi#ns correspond to optically thick leaf material with different
method is the derivation of predictive algorithms to be useabsumptions for the multiple scattering between leaf layers.
under certain canopy assumptions, not simply the evaluationTdfis thick-leaf or leaf-stack concept may have applicability
statistical correlations between sensor reflectance and grot@dclosed deciduous canopies characterized generally by
measurements. In closed dense vegetation canopies, thehigh LAI, therefore with little effect of soil background and
flectance canopy model can sometimes be replaced by differghterstorey. CR models, such as SAILH [38] and MCRM
infinite reflectance formulations, as explained later, therefof89], [40] used in this research, on the other hand, take into
simplifying the need for input parameters defining structure aggcount viewing geometry and canopy structure, therefore
geometry. As in the first methodology, this approach enablg¥deling those effects in the canopy reflectance by different
a search for subtle changes in leaf reflectance due to spedifitproximations generally based on the RTE and geometrical
biophysical processes, and the reflectance model permits diregtical considerations.
prediction of the canopy biochemical parameter. The mainDifferent infinite reflectance formulations have been derived
disadvantage is the requirement for leaf sample collection fleased on assumptions related to the scattering between layered
the derivation of leaf-level relationships. leaves forming the optically thick canopy. In each case, the
The fourth methodology, inversion of a canopy reflectandé€flectance for an optically thick medium is expressed in
model coupled with a leaf model, attempts to avoid the develojgrms of the inherent single leaf reflectance and transmittance.
ment of leaf-level relationships through the use of a leaf modéillestaeter [41] derived a simple formulation (referred to here
In this approach [24]-{27], [29], the leaf radiative transfer simS Eec1) from measurements of leaf-stack apparent reflectance
lation uses leaf biochemical constituents as input to model l&afer known dark and bright backgrounds, ignoring multiple
reflectance and transmittance that is in turn used as input fg@ttering, and considering equal reflectance for both sides of
the canopy reflectance model. The main advantage of this e leaf (1a). This simple formulation was found inadequate by
proach is that no leaf sample collection is needed to derive reMiler et al.[42] to simulate the measured reflectance of leaf
tionships, but suffers from the constraint that only biophysicafacks. A matrix formulation by Yamada and Fujimura [43]
parameters considered in the leaf model can be estimated figas used in a simulation that included multiple reflectance
measured canopy reflectance. No subtle changes due to Qﬁween leaves and considering different adaxial and abaxial
cific functioning effects can be sought, and therefore no chang€§ectance for the leafK.», (1b). The Hapke [44] infinite
at specific absorption wavelengths due to chlorophyll degrad&flectance formulagXi..3) corresponds to a medium with a
tion at different senescence stages can be studied. That is, §igle scattering albedo, assumed approximately equal to
implicitly assumed that the leaf model captures all actual réeflectance(p) + transmittancer) for a pile of leaves, (1c).
diative processes accurately. Furthermore, the method is cothe corresponding formulae approximating thick leaf canopies
putational intensive, and no validation has been found in tR&
literature reporting results in forest canopies from airborne or

satellite-measured reflectance with ground truth; previous work ~ £oc1 @pprox. leaf stack- R, =1_—pT2 (1a)
has focused on synthetic data [24], [28], field spectrometer data p

[25], estimation of results with no validation due to a lack of Rocy leaf stack— Roo = 2o (1b)
ground truth [26], comparison of different model inversion tech- L+(1—4r2)%
niques using simulated data [35], and simulation studies mod- . 1—a?

eling three-dimensional (3-D) canopies used for applying in- Roos thick leaf — R REPPES (1c)

version techniques [27], [28]. Successéhl, ., and LAl es-

timation results were reported for agricultural crops observ&bth CR andE., models have been used in this research for
with airborne CASI data in which comparisons of inversionshil,,; estimation from airborne hyperspectral data collected
from four radiative transfer models coupled to PROSPECT [29yer closedAcer saccharumM. forest canopies using the
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=T ——— Bumi = f(OLj), e.9.,ug chlyyp/CMP = a - Rys0/R7i0 + b,
— B Trasminucs —+  CARGFTEIRPRATION pam with « andb constant parameters for above-canopy simulation,
ey andRz50/ R710 @an optical index derived from the above-canopy
e B - yorar reflectance. This methodology enables the direct application
: Chks Eefecmncs | | TN of sensor-derived optical indices in scaled-up algorithms that
i | are therefore a function of the canopy structure and viewing
i i |nde . geometry, precluding the need for calibration of prediction
- ; | relationships. Assessment of optical indices as estimators

e - of bioindicators is then made comparing in-field measured
:.;‘* [ - = | bioindicators (measure,,,) with CASI-derived estimations
lk" j | (estimatedB,,).

B. Parameter Estimation by Model Inversion

Fig. 1. Schematic view of the overall analysis methodology followed for the The estimation of a biophysical canopy parameter by numer-
scaling-up method. Leaf-level reflectance and transmittance measurements ar

scaled-up to canopy level through infinite and CR models and input paramet@@? model ir_We"Sion can generally be Carri_ed Ou_t by di_ﬁe_rent
related to the canopy structure and viewing geometry. Relationships betwgaethodologies: 1) look-up tables (LUT); 2) iterative optimiza-

optical indices calculated from above-canopy simulated reflectance . _
ground-truth bioindicators are applied to above-canopy hyperspectral Ci@n (OPT); and 3) neural networks (NNT). The look-up table

reflectance to obtain bioindicator estimation. Assessment is made compakg§hnique is conceptually the simplest [35] and consists of the
ground-truth measured with estimated bioindicators. generation of an output table for a discrete set of input param-

eters covering the expected range of the parameters. The table
scaling-up and numerical model inversion methods explainigused to find the measured value that is directly related to a
below. given set of input parameters. This method requires the gen-

eration of large number of cases that are subsequently used to
A. Parameter Estimation by Scaling-Up Optical Indices compare with measured data. Iterative Optimization is the clas-

. .__.sical technique for inverting radiative transfer models in remote
A schematic view of the approach used here for estimati g g
q

of leaf bioindicators through the scaling-up of leaf-level optic relnsmg [25], 126], [45], [46] and consists of minimizing & func-

indi is shown in Fia. 1. Sinale leaf reflectan nd tran on that calculates the root mean square error (RMSE) between
dices 1S Sho 9. L. gie leal retiectance a aNte measured and estimated gquantities by successive input pa-
mittance measurementg;, ;) from field data sampling are

. ; rameter iteration. Neural networks are nonphysical methods that
used for the simulation of above-canopy reflectance throu Phy

L . te a set of input variables to a set of output variables by a
infinite reflectance and canopy reflectance models, constralqggﬁ;ning process and have been shown to be efficient in inver-
by a specific canopy model parameter assumption(get

o . ion of canopy models [47], [48].
A s_pecmc set of assumed input parameters to the CR moge(iterative—optimization numerical model-inversion techniques
defines the canopy structure, by a more or less complex se

of canopy parameters, and the viewing geometry, defined 0 estimate chlorophyll content using a coupled leaf model and a

. . .2 nopy model requires three consecutive steps: 1) estimation of
the solar zenith and azimuth, and viewing angles, needed Jor :
. : . eaf reflectance and transmittar(ge ) from a set of leaf model
simulating canopy reflectance from single leaf reflectanceé .
: input parameters such as the parameter to be estinvhied,,

and transmittance measurements. Canopy spectral reflectanc

(denotedCRy), or more precisely the above-canopy spectr Aeother leaf cellular structural or scattering parameters; 2) es-
L W b y Py SPeCl @ ation of canopy reflectance from leaf-level, model-estimated
bidirectional reflectance factor, simulated through the canop

. . o S gyr, and set of canopy model parameters that define canopy
simulation model are used to calculate specific optical |nd|cS ructure and viewing geometry: and 3) error calculation b
k (denotedOIy). For a given optical index, a set af values 99 4 y

comparison of estimated canopy reflectapté¢o the at-sensor
are calculated from the leaf-level spectral measurements use(gﬂl P Py n

. . N measured reflectance,,. Error calculation consists in deter-

for CR simulation. Leaf b|0|nd|cat0r_s (denotédl,;) measurec! mining the set of parametef3 = (N, Chl, ,,, Cyy, LAL 6, ...,
in each leaf samplel,;, carotenoids, etc) are used to derive . L . C N

. : . L which minimizes a merit functior\® over the whole spectrum
relationships with the optical indic&3;;, calculated from the
above-canopy simulated spectra. Therefore, the relationship
bgtween a given bioindicator (e.gyg chlg4,/CM?) anq a A2 = Z[pm()\i) _p*()\i7P)]2 @)
given optical index (e.gR750/ Rr10) is calculated from simu-
lated canopy reflectance rather than from leaf-level measured
reflectance. This relationship is therefore affected by canopsherep,..();) is the measured canopy spectral reflectance, and
structural parameters and viewing geometry, which permits g&();, P) is the modeled canopy spectral reflectance with a set
application to above-canopy measured reflectance. Thus, tieP” parameters. Different merit functions have been defined
relationships between the set of optical indi€gs;. and the inthe literature, each based on different assumptions. The mini-
set of bioindicators3,,,; are then applied to hyperspectral CAShizing function for numerical model inversion using reflectance
reflectance data to obtain bioindicator estimations. To do sigtain several spectral bands can be calculated 1) from single re-
above-canopy measured CASI reflectance is used to calculiiéetance channels, comparing the estimated with the measured
the CASI-optical indices input using relationships of the formeflectance in all spectral bands [(2), [24], [25]; 2) using

n
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weighting factors that represent the weight given tothevave- the 12 study sites was carried out in June 2000 selecting a dif-
length. The usual protocol is to choose weighting coefficienterent set of 14 plots of the same species. The above-canopy
w; to be proportional to the inverse of the measured canopy data acquisition using the CASI sensor was divided into three
flectancew; = 1/pm, 4, %, thereby placing more weight to wave-missions, each with a specific sensor mode of operation: the
lengths in the visible part of the spectrum where pigment abapping Missionwith 0.5 m spatial resolution and seven spec-
sorption is maximum, and minimizing the impact of errors beral bands (Fig. 2); thélyperspectral Missionwith 2 x 4 m
tween measured and estimated reflectance in the NIR, whepatial resolution, 72 channels and 7.5 nm spectral resolution
chlorophyll absorption decreases and reflectance is driven (#ig. 3), and the Full-Spectral Hyperspectral Mission, with 288
canopy structure; 3) by a more sophisticated construction afannels and 2.5 nm spectral resolution. The 12-bit radiometric
merit functions [26], where penalization to the merit functionesolution data collected by CASI were processed to at-sensor
[49] is introduced if the best fit is found when a parameteadiance using calibration coefficients derived in the labora-
being inverted falls outside the prior-established range of abry by the Centre for Research in Earth and Space Technology
lowed values; and 4) building merit functions based on spect(@RESTech). Aerosol optical depth data at 340, 380, 440, 500,
transforms or vegetation indices [46], in which the merit fun&70, 870, and 1020 nm were collected using a Micro-Tops llI
tion generated is based on the optical index that is supposedtmphotometer in the study area at the time of data acquisition
be related with the parameter subject to estimation, in this caseorder to derive aerosol optical depth at 550 nm to be used
chl,s. to process image data to ground-reflectance using the CAM5S
As an example, (3) presents a merit function when tla@mospheric correction model [52]. Reflectance data were geo-
red-edge spectral paramet8r;o/R710 is used for pigment referenced using GPS data collected onboard the aircraft. Final
estimation, which could easily be modified if a combination afegistration of the hyperspectral mode imagery was achieved by

optical indices is used registration to the CASI mapping mission imagery using visual
identification of ground-referenced 1 m white targets, which
R Rox 2 served to accurately identify the location of the sites.
2 _ 750 750
A% = [(Rm) - <R710’P> } (3) Mean reflectance values per plot were calculated from the

hyperspectral imagery in eadkcer saccharunM. study site

where(Rzs0/Rr10),, is the optical index calculated from mea-2f 20 x 20 m. The mean reflectance per plot was calculated
sured canopy reflectance, af#;;0/Rr10, P), is the optical selecting the 25% qf pixels with _hlghe_zs_t r_eflectanges in the
index calculated from modeled canopy reflectance for a givéHR. therefore targeting crowns while minimizing the influence
set of input parameter®. The use of optical indices in the meritof shadows, canopy openings and the direct understorey re-
function has not been found reported in any of the validatidi¢ctance. The study sites of sugar maple were selected in 1997
work found in the literature, in spite of the significant inhererffom existing provincial plot networks in the Algoma Region,
potential of this approach for remote sensing applications. RE€Presenting a range of productivity and decline. In particular,
flectance values measured from airborne or satellite sensors¥¥ePermanent sample plots from the provincial Growth and
a function of illumination, canopy structure, and atmospheriield Program [53], [54] were chosen to investigate the effects
condition at the time of data collection. On the other hand, es@f stand productivity in maple. Another six plots were selected
mation of biophysical parameters through optical indices maffom the provincial Hardwood Forest Health Network [55],
mizes the sensitivity to such biophysical parameters, while ndp6] to represent a gradient in maple forest decline. Detailed
malizing external effects due to atmosphere, illumination costand records exist and these sites are considered representative
ditions, and viewing geometry [50], [51]. Therefore in this re0f tolerant hardwood forests in the Algoma Region.
search, leaf-level optical indices and ratios that showed good” field sampling campaign was carried out for biochemical
correlation with pigment content are proposed here to be used@@8lysis of leaf chlorophyll concentration, along with leaf
a basis for the merit function for model inversion, as discussé&gflectance and transmittance within the same period of the
later. field data acquisition. Samplings were carried out in June and
These different approaches have been tested in this reseaféhy, of 1998 and 1999, and in June 2000, collecting from the
in order to compare the pigment estimation by different teck2P of the crowns at each one of the twelve Sugar Maple study
niques using hyperspectral airborne data collected in 19G4€S. Four leaves per tree with five trees per study site were
1999, and 2000. This data set provides a valuable validatig@mpled for measurements dil,,, and spectral measure-
database for model inversion with hyperspectral data in clos@nts of reflectance and transmittance, collecting a total of
dense maple canopies. The experimental methods and mateft4f3 leaf samples per year. Pigment content measurements from

used to carry out the pigment investigations are describdt§ leaves were made as in [15], [16]. Biochemical analysis of
below. samples from 2000 showed a narrower rangehtf,, content

compared to the 1998 and 1999 sites, with values falling into
the 29.8-42.7,g/cm? interval (while in previous years, ranges
were 19.1-41.1ug/cm? in 1998, and 26.6—45.8g/cn¥ in

CASI airborne hyperspectral data were collected in deplo$999). LAl measurements were acquired for all the plots using
ments over 12 sites dicer saccharunM. in the Algoma Re- a PCA Li-Cor 2000 instrument.
gion, ON, Canada, in 1997, 1998, and 1999. A validation of the Single leaf reflectance and transmittance measurements were
methodologies developed with 1997, 1998 and 1999 data oeequired on all leaf samples using a Li-Cor 1800—12 integrating

I1l. M ETHODS AND EXPERIMENTAL DATA
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Fig. 2. CASI image collected over one of tAeer saccharunM. study sites in the mapping mission mode of operation, with seven channels and 0.8 m spatial
resolution. The high spatial resolution facilitated target location needed in the image registration process, therefore, locating the fs2dy &ifeno (1998 and
1999) and 80x 80 m blocks (2000 validation campaign, white box in figure).

sphere apparatus coupled by a 208 diameter single mode surements. Smoothing of reflectance and transmittance was car-
fiber to an Ocean Optics model ST 1000 spectrometer withriad out as described in [15], using a Savitzky—Golay approach
1024 element detector array, yielding a 0.5 nm sampling interwith a third-order polynomial function with 25 nm bandwidth
and ~ 7.3 nm spectral resolution in the 340-860 nm rangdéound optimum for our spectral data set.

The spectrometer is controlled and read out by a National In-
struments multipurpose data acquisition card (DAC-550). Soft-
ware was designed to allow detailed control of signal verifica-
tion, adjustment of integration time, and data acquisition [57]. Leaf-level relationships were developed between
Spectral bandpass characterization performed using a merauayrow-band optical indices anchl,, from the samples
spectral line lamp source yielded full-width at half maximuncollected from theAcer saccharunM. study sites in June
(FWHM) bandwidth estimates of 7.37 nm, 7.15 nm, and 7.2ahd July 1998 and 1999 campaigns. Red edge and spec-
nm, at 438.5 nm, 546.1 nm and 576.9 nm, respectively. Filteal and derivative indices consistently showed the best
spectrometer wavelength calibration was performed using ttetationships in the two-year study, demonstrating that
Ocean Optics HG-1 mercury-argon calibration source, whi€Rs50/R710) (r = 0.92), Vogl (R7uo/Rr0) (r = 0.91),
produces Hg and Ar emission lines between 253 and 922 nveg2 (Ryss — Rru7)/(Ras + Rms) (r = 0.90), Vog3
Single leaf reflectance and transmittance measurements WeRgzs — Rra7)/(R715 + Rreo) (r = —0.91), Vog4
acquired following the methodology described in the manual f0D71 5/ Dro5) (r = 0.90), GM1 (R750/R350) (r = 0.83), GM2

the Li-Cor 1800-12 system [58] in which six signal measuré42750/R700) (r = 0.91) and Ctr2(Regs/R760) (r = —0.81)
ments are required (see [15], [16] for measurement protocdbed-edge indices) andl, ( = 0.90), DP21(DA,/D~os) (r =

An integration time of 609.3 msec was used for all sample me@&78), and DP22(D\, /D7) (r = —0.76) (spectral and

IV. RESULTS
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Fig. 3. View of a selection of the study areas of 59600 m acquired over thmaple declinglots used for field measurements in 1997, 1998, and 1999. CASI
data of 2x 4 m and 72 channels from the study sites for leaf sampling collection (in white box). Composite image from 555.6 nm (blue), 706.8 nm (green), and
852.1 nm (red).

derivative indices) achieved the best results in both early aschling-up through a radiative transfer model and by model
mid summer when used fehl,+, estimation. Optical indices inversion of a coupled leaf and canopy model approaches are
calculated from the red edge are consistently well correlatsdown in next sections.

with chl, s, since this is the spectral region where pigment o ] ) )
absorption decreases, therefore exhibiting increasing effefts Estimation othl + b by Scaled-up Optical Indices Applied

of the medium structure in the measured reflectance, affectih CASI Hyperspectral Data

the slope. Results obtained with airborne CASI reflectanceThe leaf-level relationships between optical indices and
data from the study sites for the estimationchf,,, by the chl,,, calculated from single leaf reflectance and trans-
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TABLE |
DETERMINATION COEFFICIENTS ANDRMSE (g/cn?) OBTAINED IN chl,, ESTIMATIONS APPLYING RELATIONSHIPS FROMSINGLE LEAF REFLECTANCE SET OF
MEASUREMENTS(p), Roo1, Roo2y AND Roo3 OPTICALLY THICK LEAF SIMULATION MODELS, AND SAILH AND Kuusk CR MODELS TOCASI DATA COLLECTED
OVER ACER SACCHARUMM. STUDY SITES IN 1998(n = 12) AND 1999(n = 12). CODES VISIBLE RATIOS (C1), RED-EDGE INDICES (C2), AND SPECTRAL AND
DERIVATIVE INDICES (C3). IN GREY RELATIONSHIPS WITH R? > 0.3 AND RMSE < 10

Determination RMSE (pg/em?) RMSE (ug/cm?)
Coefficient 1998 1999
R’ R’ P Ra Rez Raz Raanm Riwsj p Rar Rz Rus Rsann Riuus
1998 1999
Ryso/Roioeny | 048 056 50538 811 1078 12.09(24.68 853 425 8§27 1139 10.41
Vogl (2 9. 803 9753749 1724 6 926

G.M2 12.32{18.08 14 &

Vog3 3 10.48141.72 147
Ao o) 3 3171 ik

V0g2 2) 57 . 10.29

V0g4 (2} 15.78 SE e

G_Ml - |54.56

Ctr2 o 438 163

DP21 (3 12.74 7.48 55 146,92 18.84

Ctrl (1) - - -

DP22 3 3 1345 998 - - - -
Licd ), | 0.07 - - 3 10.61 11.03
Gey |026 0384 - - - 6

“Vogl (Ryg/Ry), GM_2 (Ryso/Rype)s Vog3 (Ryzg-Rygp)(Ryis+Ryx), Vog2 (Ryz-Ryg)/(Ryis+Ra), Vogd
(D15/Dos), GM_1 (Ryso/Rss0), Ctr2 Reos/Ryco, DPZL (Dyy/Dros), Ctrl (Reos/Razo)s DP22 (Day/Drzo), Licd
[k , G Rssa/Re).

mittance data collected from the ground-truth deploymentdso demonstrated the small effect of the solar zenith angle
in June and July 1998 and 1999, and those scaled-up#6te especially in red edge spectral and derivative indices, with
above-canopy level through infinite reflectance models, afess than 2% variation in the predicted bioindicator wifgn
SAILH and Kuusk canopy reflectance models were appliethanges from 20to 60°, where the optical indices used are
to CASI hyperspectral data forhl,,, estimation. For the Vogelmann(R7.o/R720) and DP21( DX,/ D+3), respectively.
application of the SAILH and Kuusk canopy reflectanc@herefore, changes iy from 29 to 41° in the 12 CASI
models nominal input parameters derived from the study areasmges obtained from the study sites in 1998 and 1999 are not
were: LAI = 3.5, plagiophile leaf angle distribution functionexpected to affect the bioindicator prediction whgn= 30°
(LADF), soil reflectance data derived from CASI imagerywas chosen as nominal input parameter in the CR model when
and model-estimated skylight irradiance fraction based analing from leaf-level to canopy-level. Presented in Table | are
conditions during airborne acquisitions. Additional parametetise determination coefficients and RMSEs obtainedhiy .,
needed in the Kuusk model were = 1.4, s/l = 0.007 estimation by applying relationships obtained from single leaf
andf#* = 40°, ande = 0.95, and¥d,, = 45° for the LADF reflectance set of measuremengs, ©ptically thick leaf simu-
assumed to be a plagiophile distribution. A model parametation models R..1, Roo2, aNdR..3), and CR models (SAILH
sensitivity study was carried out in order to study the effect @ind Kuusk to CASI data collected over th&cer saccharum
such nominal structural and viewing geometry parameters bh study sites for 1998» = 12) and 1999»n = 12). These

the optical indices that are used for prediction. This sensitivitgsults show consistency between CASI-level and leaf-level
study [9], [17] showed that low LAI values are very criticakrelationships obtained between optical indices atdl,,

to the accuracy of predicted bioindicator through opticalontent. The best indices fohl,; estimation that were found
indices regardless of the considered type of canopy. The stuatyeaf level are likewise those achieving best estimations when
showed that differences between the predicted bioindicatmpplied to CASI canopy reflectance. It is also demonstrated
using nominal canopy parameters and the prediction withat a cross-seasonal consistency exists in the performance
variablef, and LADF is insignificant (less than 5%) when LAl of the best indices for 1998 and 1999, showing that the good
is higher than three, and the optical indices used are the estimation performed by the best indices is maintained from
edge reflectance-ratio indices and spectral and derivative rE2P8 to 1999 campaigns.

edge indices. Furthermore, the canopy type was shown to bd&red-edge indices, especially,, and DP21(Dy;/D~p3)
irrelevant when the same optical indices are used (less thred spectral and derivative indices such @&r50/R710),

5% difference) for the estimations when LAl is higher thaWogl (Rrio/R720), G_M2 (R750/R700), VOQ3 (Rr7za —
three and thé; is a nominal 30. It was shown that derivative R747)/(Rs5 + R720), V092 (R734 — R7az)/(R715 + Rrog),
indices are less sensitive to low LAI values than other optics0g4 (D715/D705), G_M1 (R730/R330), and Ctr2
indices, demonstrating that red edge and derivative indic@8s95/R760) are the best optical indices fathl,y, esti-

are more suitable for bioindicator prediction and mappingation at canopy level. Other optical indices show significance
with high spatial hyperspectral remote sensing data. Reswlisen used as estimators ofil,,;, but inconsistency exists
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Fig. 4. Estimation ofhl, , from CASI data using Vog{R+40/ R720), G_M2(Rz50/ R700), andDP21( D,/ D~q3) optical indices developed at leaf level
throughp, R.. and CR models in 1Acer saccharunM. study sites for 1998 (left) and 1999 (right).

between deployments such as Lic4 (area under 450-6BQ.;, R..2, andR..3, and the SAILH and Kuusk CR models
region) @ = 0.06, 1998; R> = 0.49, 1999), PRI2 are illustrated in Fig. 4. It can be seen that the estimation im-
(Rs50 — Rs31)/(Rs50 + Rs31) (R? = 0.32, 1998;R? = 0.14, proves when SAILH and Kuusk CR models are used. For all
1999), andR,, (R? = 0, 1998;R? = 0.34, 1999). Traditional indices used the estimations improve (linear regression slope
and well accepted optical indices for indicators of vegetatigmrogressively approaches unity) and RMSE significantly de-
status such as NDVI and SR performed poorly in the twareases when the optical indices are calculated usingisst
consecutive yearsk? = 0, 1998; R> = 0.05, 1999 (NDVI), andthen CR models (Table I), although RMSE does notimprove
andR? = 0, 1998;R? = 0.05, 1999 (SR). These traditional significantly when CR models are used. In addition, generally
indices, calculated as ratios of NIR/VIS, are primarily trackinfpwer RMSE is found withR..> and R..3 than with Rsarn
canopy structural changes but are not able to track subdled Rx.,..:. From the three infinite reflectance models used.
changes due to pigment content variation between study sitBs.s (Hapke) andR..> (Yamada and Fujimura) are the ones
Therefore, this study provides strong evidence that canopashieving best estimations, approaching the predictive ability of
with homogeneous structure but different chlorophyll conte®AILH and Kuusk CR models.
need the use of red edge and spectral indices to estimate )
changes in pigment content. B. Estimation ofChl,,, by Model Inversion

The estimation ofhl,,; from Vogl (R7s0/R720), G_M2 SAILH and MCRM CR models and PROSPECT leaf model
(R7s0/Rro0) and DP21( Dy, /D+o3) optical indices using, were used fokhl, 4, estimation by inversion using 1998 and
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TABLE I 45

ESTIMATION OF chl,;; OVER 12 ACER SACCHARUMM. STUDY SITES IN 1998
AND 1999BY MODEL INVERSION AND SCALING-UP METHODS WITH LEAF

STRUCTURAL PARAMETER N ESTIMATED BY INVERSION (V = 1.54, 1998;

N = 1.43,1999). For SAILH AND PROSPECT MDEL INVERSION THREE

METHODS WERE USED: MINIMIZING A FUNCTION WITH ALL SPECTRAL

CHANNELS WITHOUT WEIGHTING COEFFICIENTS(w; ), WITH WEIGHTING

COEFFICIENTSCALCULATED AS THE INVERSE OF THEREFLECTANCE (w;) AND

BY A FUNCTION BASED ON THE OPTICAL INDEX R7s50/ R710

y = 1.5185x - 2.282 y =1.0024x + 1.7228
F? =0.499

35 1

y = 0.5871x + 7.4988
Fe = 0.3302

25 1

SAILH + PROSPECT MCRM + PROSPECT | SCALING-UP R.5/Ry10
—— R RMSE in ugfen) (R, RMSEinpgfom’) | (R RMSEinpgomd)
W 033,120 i
1998 w; ©0.32,168 0.33,8.22 CRsann 3 g.g , 21;01'1/
Riso/Rye ¢ 043,557 (one outlier) Res v 47,8 ) i ‘ . I

" 049,501 :

; | , : 10 20 30 40
1999 w; i 047,11.43 0.34,5.89 CRsany E 065577, 181.34 50 60
Rysg/Ryze | 0.57,1248 R.s .57, 8.

chia+b Measured ( gg/cm?)

chla+b Estimated (ug/cm?)

® Scaling up R750/R710 through SAL

1999 CASI data. The inversion of the coupled MCRM and @ SAL+PROSPECT inv. (R750/R710} upper 25%
PROSPECT models was performed as indicated in [26] by = SAL+PROSPECT inv. (all . channels) all pixels
minimizing a merit function?'[49]. Two different approaches

were tested: 1) setting LAl to a measured vdldd = 4; and 2)

allowing both LAl andchl,, to vary. Other model parameters 45 f
for MCRM were set to nominal values derived from the study = 14gox- 112 L W
areas, such as plagiophile LADF with, = 45°, ¢ = 0.95, T FP = 0.5674
solar zenith anglé, = 35°, hotspot parameter/l = 0.008, § 4
N (PROSPECT) = 1.54 (1998) and 1.41 (1999) estimated =2 u
with collected leaf samples by PROSPECT model inversion, H] a5
Markov parameter, = 1.1, viewing anglef = 0°, relative g ¥ =0.6083x + 11918
sun azimuthy = 0°, and turbidity factor? = 0.18. = w FE=04855

The inversion ofSAILH + PROSPECT models was per- 3 50
formed by iteration and minimizing a function as indicated in s
[24], [25] for all the 72 CASI channels in the visible and NIR. o
In addition, a methodology consisting of minimizing a function 25 R — — . ;
basedin ared edge optical index that show good correlation with 10 20 %0 40 50 60
pigment content in the leaf-level study was also used, where chla+b Estimated (u.g/cm?)
bothchl,, and LAl were allowed to vary over arange of values @ Soaling up 750710 Trough SAL
four to seven for LAl and ten to 70g/cm? for chl,, with the © SAL+PROSPECT inv. (RT50/R710)
merit function adopted as in (4) W SAL+PROSPECT . (all . channels)

F(LAI, Chla+b) = [(R ) Fig. 5. Estimation ofhl, ., over 12Acer saccharunM. study sites in 1998
710 /' CASI (top) and 1999 (bottom) by 1) SAILH and PROSPECT model inversion using
2 all reflectance channels in the merit function; 2) SAILH and PROSPECT

R =
— 750 . (4) model inversion usingR~s0/R-10 in the merit function; and 3) scaling-up
SAILH4+PROSPECT R750/Rr10 through SAILH canopy reflectance model. LAl was set to four,
and N = 1.54(1998), N = 1.41(1999), estimated from leaf samples by

A comparison of results from the two estimation methodold>ROSPECT model inversion.

gies is shown in Table II, withk? = 0.33 and RMSE =

12.0 pg/cm?, R? = 0.49 andRMSE = 5.91 pg/cm? (1999) imizing function by iteration are comparable to those
when all CASI channels were used as a minimizing functidnom the scaling-up methodology, witlkR?> = 0.43 and
with no weighting coefficientsy; and withLAI = 4. When RMSE = 5.57 ug/cn? LAI = 4 in 1998 andR? = 0.57 and
coefficientsw; are specified as the inverse of the measured lBMSE = 12.48 ug/cm? (LAI = 4) in 1999. These results
flectance, results ar&? = 0.32 andRMSE = 16.8 ug/cnm?  imply similar estimation performance as the scaling-up method
(1998), andi?? = 0.47 andRMSE = 11.43 pg/cm? (1999), for 1998 and 1999 using the same LAR? = 0.47 with
showing that RMSE increases when weighting coefficients aRMSEsamn = 10.7 pg/cm?; RMSEg_, = 8.11 pg/cn?

used. in 1998 andR? = 0.57, RMSEsarrg = 11.4 pg/cm?;
Results obtained from the coupled MCRM an®MSEg_, = 8.3 ug/cm? in 1999 (see Table Il). Fig. 5 is
PROSPECT model inversion show?? = 0.33 and used to illustrate the comparison of estimations for 1998 and

RMSE = 8.22 pg/cn? (one outlier) in 1998; and? = 0.34 1999 by 1) scaling ug;so/ R-10 index through SAILH; 2) by
andRMSE = 5.89 pg/cn? in 1999, therefore, indicating sim- SAILH and PROSPECT inversion using all CASI reflectance
ilar RMSE but lowerR? compared to SAILH and PROSPECTchannels; and 3) b AILH + PROSPECT inversion using
inversion. the red edgeir;0/R710 index.

The results obtained with SAILH and PROSPECT model Both the scaling-up and tHeAILH + PROSPECT model
inversions using the red edge indéi¥;o/R710 as a min- inversion methods generated comparable results when the same
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Fig. 6. Reflectance spectra obtained from édwmer saccharunM. study site by selection of all pixels (d, in blue) and targeting the brightest 25% in the NIR (d,
in red). The plot (b)—(c) from the (a) study area is subset and a channel in the NIR (800 nm) used to select the brightest pixels. Red pixels in @)esetihbse
are not selected when the spectrum is calculated targeting only the crowns, therefore not including shadows and canopy openings.

minimizing function based on a red edge index was used, apel seen in the estimation dil,,, by SAILH + PROSPECT
poorer estimations when all CASI reflectance bands are useatbdel inversion with all reflectance channels as merit function
The small effect of LAI variation in closed dense canopies camth w; = 1/r;: R? = 0.32, RMSE = 16.8 ug/cm? for LAI =
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4; R? = 0.32, RMSE = 16.6 ug/cm? for LAl variable (1998), TABLE Il

2 _ RMSE = — 4 R2 — COMPARISON OFRMSE (11g/cn¥) AND R? FORchl, 1, ESTIMATION BY
and R 0.47, SE 11.43 ug/cm2 for LAL 4 R SCALING-UP LEAF-LEVEL OPTICAL INDICES IN 1998AND 1999 DEPLOYMENTS

0.41, RMSE = 12.16 pig/cn¥ for LAI.va}ri_abIe (1999)- These ConsipERINGALL PIXELS IN THE 20 x 20 M AREA AVERAGED REFLECTANCE
results clearly demonstrate that minimizing functions based ainTH 2 m SpaTIAL RESOLUTION AND 72-CHANNEL CASI DATA (100 RXELS),

absolute canopy reflectance bands, weighted or not as a functio® SELECT'(N)G THE UF’PER2D5% FfXCELS IN THE E'R TO MINIMIZE MS/IHADOWS
of wavelength, generate poorer determination coefficients and ~ ANP OPENINGS IN ADENSELANOPY OF ACER SACCHARU

RMSEs than a single optical index calculated in the red ed  Sealingup  Sealingup  Sealing up _Sealing up
spectral region, such @750/ Rr1o. 7 o T R N
up [ all T up [all | up [all T up | all {up{alliup] all | up [all i up | ail
R’ 048 046:0.57 0.44[047 046:0.57 044 |0.47 0.46:0.57 0.44 | 047 0.46:0.57 044
C. Effects of Shadows and Canopy Structure RMSE |9.95 11.12{8.53 11.1]5.38 600425 413 [811 75:83 74 [107 102114 103
SAILH, Kuusk CR models and infinite reflectance models,
used for model inversion or in the scaling-up method, pro- TABLE IV

vide an improvement in prediction capabilities compared tg°MPARISON OFRMSE (ug/cm?) AND R® FORchl ., ESTIMATION IN 1998
istical leaf-| i |ati hi hel b ND 1999 DEPLOYMENTS CONSIDERINGALL PIXELS IN THE 20 x 20 MAREA
statistical leaf-level linear relationships. Nevertheless, bo ERAGED REFLECTANCE WITH2 M SPATIAL RESOLUTION AND 72-CHANNEL

SAILH and Kuusk models are useful for infinite plane-parallel CASI DATA (100 RXELS), AND SELECTING THE UPPER25% RXELS IN THE

turbid-medium canopies, and the infinite reflectance model§/!R TO MINIMIZE SHADOWS AND OPENINGS IN A DENSE CANOPY OF ACER
SACCHARUMM. LAI = 4 WAS CONSIDERED INALL CASES AND NO

that correspond to a thick layer subject to the assUMPLioRsgyiring CoeFFICIENTSWERE USED IN THE MODEL INVERSION WHEN ALL

made for the multiple scattering. Canopy openings, shadows, CHANNELS ARE USED IN THE MERIT FUNCTION
and changes in the geometry of the canopy elements typi~~!
3 i . SAILH+PROSPECT | SAILH+PROSPECT | R.,+PROSPECT | R.;+PROSPECT
for broad leaf forest stands are not simulated in the modeli A’=f(TR,) A’~f(Ryso/Rose) A'=f(Ry/Rose) A'=f(Ry5o/Rayg)
. P . 1998 1 1999 1998 1 1999 1998 & 1999 1998 1 1999
described above, therefore raising questions about the apj o |l L up | ol [ wp | ol wp | all Tuplall wp [ el [ wp [all ap] all

priateness of anal_ysis using modeling approaches deSiglRI;SZE Ioi? B1so 157155 21;1025478 ol gfiosss? Ti9 536 65 455
for uniform vegetation canopies. In order to use plane-paralier
canopy model results with our CASI data, all the results
discussed were obtained by a preselection of the upper pixedd edge are less affected to structural changes and shadows
values in the NIR, therefore selecting the brightest pixels mirthan single reflectance channels. This result is illustrated in
mizing shadows and canopy openings in all study areas (Fig.Big. 7, where it can be seen that red ed&go/R710 optical
The different methodologies used here for pigment estimatiordex used for model inversion through canopy modeling is
were tested for both 1) calculation of the average reflectancet perceptibly affected when all pixels are included in the
from all 20 x 20 m study sites by selection of the brightesaveraged reflectance from the 2020 m study sites (% 2 m
25% pixels in the NIR, as done before, and 2) calculation gfxel size), thereby including canopy shadows and openings.
the average of all pixels from the 20 20 m sites, therefore  This analysis also demonstrates thdtl,., estimation
including an effect due to shadows. Since we are dealing witly scaling up through... infinite reflectance model is the
a dense forest canopy and using high spatial resolution imagethodology, which generates the smallest RMSE, although
data, the effects of the shadows on the different methodologlégher errors are found when the same infinite reflectance
used for pigment estimation can be studied. The results foodel is used coupled with PROSPECT and inverted. This
1998 and 1999 CASI data are summarized in Tables Il and IMiggests that leaf-level derived relationships are more accurate
for eight methods of pigment estimation: 1, 2, and 3 scale up tfeg scaling up through..» than reflectance and transmittance
Rr50/Rr1o optical index throughR .1, Reo2 andR..3 infinite modeled by PROSPECT. If no leaf-level relationships are
reflectance models, respectively; 4 scales up Bgy/R71o derived, model inversion using..s + PROSPECT showed
optical index through SAILH canopy reflectance model; fower RMSE compared t8AILH + PROSPECT, each with
and 6 are numerical inversions of SAILH and PROSPECHR;; /R0 in the merit function. Estimation ethl,, over the
using all reflectance channels in the merit function, and usisgudy sites that presented extreme valuasibf, , measured in
R50/Rr1o in the merit function, respectively; and 7 and 8 aréhe field in 1998 and 1999 campaigns are shown in Fig. 8, with
numerical inversions of?..» and R..3, respectively, coupled the highest values measured in leaf samples of ag&nv
with PROSPECT usin@z50/ 710 in the merit function. (1998, Fig. 8, upper left) and 45,8y/cn? (1999, Fig. 8, lower

It is clear that there is little effect due to shadows iteft). The lowest values afhl,, measured were 19.08/cn
the estimation of thechl,., when the red edge optical (1998, Fig. 8, upper right) and 26.58y/cm? (1999, Fig. 8,
index Rrs0/Rro is used in the merit function for all the lower right).
methods usedRMSE = 5.57 ug/cm? (brightest 25%),  Three numerical model inversion methods that showed best
MSE = 5.48 pg/cn? (all pixels) in 1998 with SAILH and results in 1998 and 1999 fehl, ., estimation were used for
PROSPECT inversion usingrso/ 710 in the merit function. the validation carried out in 2000 deployment with a different
On the other hand, a large effect is found due to radiometset of study sites: 1) SAILH coupled with PROSPECT with
texture (shadows) when all reflectance channels are used indie7r2 CASI channels in the minimizing merit function, with
minimizing function:RMSE = 12 ug/cn¥ (brightest 25%), no weighting function; 2) SAILH coupled with PROSPECT
RMSE = 23.1 pug/cnm? (all pixels) in 1998 with SAILH and (N = 1.4) with Rr50/R710 optical index as merit function; and
PROSPECT inversion. This finding is consistent in all cas& R..3 coupled with PROSPECTN = 1.4) with Rz50/Rr710
(Tables Ill and 1V), demonstrating that optical indices in theptical index as merit function. The results obtained for the
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Fig. 7. Effect of shadows and canopy structure in the estimatiehlgf, , by SAILH + PROSPECT model inversion using (leftR-50 / R-10 and (right) all
CASI spectral channels in the merit function. The red-eftge, / R710 optical index used for model inversion through canopy modeling does not get affected

when all pixels are included in the averaged reflectance from the 20 m study sites (X 2 m pixel size), therefore including canopy shadows (data from the
1998 campaign).
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Fig. 8. Chl.;, estimation over the study areas (580600 m) that presented extreme valueslof, , , measured in the field in (up) 1998 and (bottom) 1999
campaigns. The highest valuesddd, ., (left) were measured in leaf samples from GY41 network site (uppekldft, , measured = 38.8 ug/cn? in 1998)
and GY15 (lower leftchl, ;, measured = 45.8 pg/cm? in 1999). The lowest values of (righthl, . were measured in leaf samples from MD35 (upper right,
chl. 1, measurea= 19.08 pg/cn¥ in 1998) and MD33 (lower left;hl,,, measured= 26.58 pg/cnf in 1999). White box shows the study area of 2@0 m
where leaf sampling was carried out.

three methods when all pixels and only the brightest 25%999 conclusions, demonstrating that better estimations are
pixels in the NIR are targeted in the 80 80 m plots are achieved when the merit function is based on a red edge optical
summarized in Table V. These results confirm the 1998 aimtlex such asi;50/R710: R? = 0.18, RMSE = 14.8 ug/cm?
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S SAIL+PROSPECT inv. (R750/R710), upper 25% % SAIL+PROSPECT inv. (all rfl. channels), upper 25%

Fig. 9. Effect of shadows in the estimationdf1,, by SAILH + PROSPECT model inversion using (rightR-s0/R-10 and (left) all CASI reflectance
channels in the merit function confirmed with the CASI 2000 data. The red Bdge/ -1, optical index used for model inversion through canopy modeling
does not get as much as affected when all pixels are included in the averaged reflectance from 8@r8Gtudy sites (0.8& 3.4 mresampledto 1.5 1.5 m
pixel size), therefore including canopy shadows.

TABLE V V. CONCLUSIONS
COMPARISON OFRMSEAND R? FORch1, ., ESTIMATION IN THE YEAR 2000
VALIDATION DEPLOYMENT CONSIDERINGALL PIXELS IN THE 80 x 80 m iati H H
AREA AVERAGED REFLECTANCE OF0.86 X 3.4 m RESAMPLED T0O1.5x 1.5 m _Radlatlve transfer theory a_nd mOde“n_g assumptions Were_ap
SPATIAL RESOLUTION AND 72-CHANNEL CASI DATA (2809 RXELS), plied at leaf, laboratory, and field scales in order to study the link
AND SELECTING THE UPPER25% RXELS IN THE NIR TO MINIMIZE between leaf reflectance and transmittance and canopy airborne
SHADOWS AND OPENINGS IN A DENSE CANOPY OF ACER SACCHARUM ; ; : :
M. LAT — 4 WAS CONSIDERED INALL CASES AND NO WEIGHTING hyperspegtrgl data acquired with d|ﬁ§renF spectral and spatial
COEFFICIENTSWERE USED IN THE MODEL INVERSION characteristics. Approachesdd,, , estimation in closed forest
canopies ofAcer saccharumM. focused on both scaling-up
SAILH+ SAILH+ R.s+ ; i i
PROSPECT PROSPECT PROSTRCT gnd_ numerical model_|nver_S|on approacheg. A _me_thodology_for
A=f(ZRy) A'=fRoso/Roto) | A=F(Ryse/Roe) linking leaf-level relationships between optical indices and pig-
up__ | all up__ | all up | all ment content to canopy-level reflectance was presented. It has
2 . .
R 02 018 | 042 043 | 043 044 been demonstrated that leaf-level relationships calculated from

RMSE 4.8 14.8 3.0 5.2 5.0 8.9

single leaf reflectance and transmittance data collected from the
ground can be scaled-up to above-canopy level through infinite
(SAILH + PROSPECT inversion using all reflectance reflectance and canopy reflectance models using nominal input

channels, all pixels)k? = 0.43, RMSE = 5.2 ug/cm? parameters derived for these study areas consisting of closed
(SAILH + PROSPECT inversion usingR;so/ 710 red edge canopies. The high spatial resolution of the airborne hyperspec-
index, all pixels). tral CASI data permitted the selection of crowns, eliminating

The small effect of shadows on pigment estimation wheshadows and understorey, therefore allowing the use of SAILH
R0/ R710 index is used witlBBATLH + PROSPECT model and Kuusk turbid-medium canopy models.
inversion was also confirme®MSE = 3.0 ug/cn? (brightest ~ The results obtained in the scaling-up approach
25%),RMSE = 5.2 ug/cn? (all pixels), and a larger variation through canopy reflectance models and hyperspec-
in RMSE is observed when all reflectance channels are usé@dl canopy reflectance fromAcer saccharumM. study
RMSE = 4.8 ug/cm? (brightest 25%)RMSE = 14.8 ug/cn?  sites showed that red-edge indices, especially and
(all pixels) (see Fig. 9). Results obtained wil,3 infinite DP21 (D,,/D73), and spectral and derivative in-
reflectance model coupled with PROSPECT also demodices such asRrs0/Rro, Vo9l (Rrao/R720), G_M2
strate its applicability in closed canopies with high LAI(R750/R700), VOg3 (R734 — R7a7)/(R71s + Reao), Vg2
PROSPECT COUpled with SAILH anf..3 with R750/R710 (R734 - R747)/(R715 + R?QG), VOg4 (D715/D705), G M1
in the merit function obtained similar resul{g? = 0.4), (Rrs0/Rs50), Ctr2 (Reos/Rre0) are the best optical indices
although RMSE’'s are slightly smaller with SAILH:for chl,, estimation at canopy level. Furthermore, traditional
RMSE = 3.0 pg/cm? (SAILH + PROSPECT, brightest and widely used optical indices for pigment estimation and in-
25%),RMSE = 5.0 ug/cm? (R..3 + PROSPECT, brightest dicators of vegetation status, such as NDVI and SR, performed
25%); RMSE = 5.2 ug/cm? (SAILH + PROSPECT, all poorly in the two consecutive years. These traditional indices
pixels), RMSE = 8.9 ug/cm? (R..3 + PROSPECT, all primarily track canopy structural changes but are not able to
pixels). track subtle changes due to pigment content variation between
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study sites. This demonstrates that canopies with homogeneous
structure but different chlorophyll content need the use of
red edge and spectral indices to estimate changes in pigmen
content.

For the closedAcer saccharunM. canopies studied in this
research, thehl,,, estimations using optically thick models,
which don’t need structural and viewing geometry as input p
rameters implying much faster and easier operational appli
bility, demonstrated a predictive potential (low RSME in estimg”
tions) that was close to, and for some indices, superior to tho e
using canopy models. Of the three infinite reflectance modéi
used, the formulaéi..3 (Hapke) andR... (Yamada and Fu-
jimura) provided the best estimations, suggesting that infinite
reflectance models can be used for canopy reflectance modelinﬂ]
in closed forest canopies of high LAI, performing as well as
canopy reflectance models when crowns are targeted and spe-
cific sensitive indices are used. (2]

The approach of scaling-up of optical indices through canopy
models was compared to the numerical model inversion of(3]
coupled PROSPECT leaf radiative transfer model with SAILH,
MCRM and infinite reflectance models, in which no leaf 4
sampling is required to develop the statistical relationships.
Results of the numerical model inversion by iteration showed
that superior results were found when a methodology consistinds]
on minimizing a function based in a red edge optical index wasi6]
used, rather than by matching all the CASI reflectance bands
in the visible and NIR. Results of SAILH and PROSPECT 4,
coupled model inversion using the red edge inflexy / R710 as
a minimizing function by iteration showed comparable results
to the scaling-up methodology, without the need for developing
leaf-level relationships. Furthermore, estimations show only a
small effect when shadow pixels are included for the estimation
of the chl,4; using SAILH and PROSPECT inversion with [9
the red edge optical indeR5,/R710 in the merit function.

On the other hand, a large effect due to inclusion of shadovE/m]
pixels is found with SAILH and PROSPECT inversion when

all reflectance bands are used in the minimizing function. This
result might have important implications, showing the value
of red edge indices for both scaling-up and model inversiorglll
approaches in pigment estimation of closed canopies.

Results obtained in this research for three consecutive years
two of them with extensive leaf sampling campaigns, using a sé%zl
of 12 Acer saccharunM. sites, were validated with a new set
of 14 sites in order to test the conclusions. The successful val-
idation campaign carried out in the summer of 2000 confirme&ml
the hypothesis developed in previous years, obtaining compa-
rable RMSE forchl, ., estimation by numerical model inver- (14]
sion of coupled SAILH and PROSPECT models with nominal[15
input parameters anlz5o/R710 in the merit function. Results
presented in this paper demonstrate the capability of high spa-
tial hyperspectral sensors to map pigment content over clos 96]
forest canopies through radiative transfer models. Moreover, it
suggests that methodologies investigated here based on pigment
estimation by model inversion using red edge indices mighhn
be transferred to MERIS sensor using tReso/R7o5 optical
index, although the implications of the spatial heterogeneity ol
the forest landscape compared to the 300 m sensor spatial re o—]
lution, and the species dependence will need to be evaluated.
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